This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-...This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences.展开更多
Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the d...Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
Many studies revealed unconscious effects on conscious processing. However, in this study, we tried to investigate whether unconscious processes could interact with each other by using simultaneously presented face pi...Many studies revealed unconscious effects on conscious processing. However, in this study, we tried to investigate whether unconscious processes could interact with each other by using simultaneously presented face pictures with the same or a different unconscious valence (SUV versus DUV). In the first event-related potential (ERP) study, DUV elicited a smaller N2 as compared with SUV. In the second functional magnetic resonance imaging (fMRI) experiment, the left middle frontal gyrus (MFG) was activated under DUV condition in comparison to SUV condition. These results support the idea of interactions between unconscious processes (unconscious mismatch detection). The theoretical implications are discussed in the light of the global neuronal workspace theory.展开更多
This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion b...This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.展开更多
Human object interaction(HOI)recognition plays an important role in the designing of surveillance and monitoring systems for healthcare,sports,education,and public areas.It involves localizing the human and object tar...Human object interaction(HOI)recognition plays an important role in the designing of surveillance and monitoring systems for healthcare,sports,education,and public areas.It involves localizing the human and object targets and then identifying the interactions between them.However,it is a challenging task that highly depends on the extraction of robust and distinctive features from the targets and the use of fast and efficient classifiers.Hence,the proposed system offers an automated body-parts-based solution for HOI recognition.This system uses RGB(red,green,blue)images as input and segments the desired parts of the images through a segmentation technique based on the watershed algorithm.Furthermore,a convex hullbased approach for extracting key body parts has also been introduced.After identifying the key body parts,two types of features are extracted.Moreover,the entire feature vector is reduced using a dimensionality reduction technique called t-SNE(t-distributed stochastic neighbor embedding).Finally,a multinomial logistic regression classifier is utilized for identifying class labels.A large publicly available dataset,MPII(Max Planck Institute Informatics)Human Pose,has been used for system evaluation.The results prove the validity of the proposed system as it achieved 87.5%class recognition accuracy.展开更多
In the new era of technology,daily human activities are becoming more challenging in terms of monitoring complex scenes and backgrounds.To understand the scenes and activities from human life logs,human-object interac...In the new era of technology,daily human activities are becoming more challenging in terms of monitoring complex scenes and backgrounds.To understand the scenes and activities from human life logs,human-object interaction(HOI)is important in terms of visual relationship detection and human pose estimation.Activities understanding and interaction recognition between human and object along with the pose estimation and interaction modeling have been explained.Some existing algorithms and feature extraction procedures are complicated including accurate detection of rare human postures,occluded regions,and unsatisfactory detection of objects,especially small-sized objects.The existing HOI detection techniques are instancecentric(object-based)where interaction is predicted between all the pairs.Such estimation depends on appearance features and spatial information.Therefore,we propose a novel approach to demonstrate that the appearance features alone are not sufficient to predict the HOI.Furthermore,we detect the human body parts by using the Gaussian Matric Model(GMM)followed by object detection using YOLO.We predict the interaction points which directly classify the interaction and pair them with densely predicted HOI vectors by using the interaction algorithm.The interactions are linked with the human and object to predict the actions.The experiments have been performed on two benchmark HOI datasets demonstrating the proposed approach.展开更多
Brazil is the world leader in sugarcane production and the largest sugar exporter. Developing new varieties is one of the main factors that contribute to yield increase. In order to select the best genotypes, during t...Brazil is the world leader in sugarcane production and the largest sugar exporter. Developing new varieties is one of the main factors that contribute to yield increase. In order to select the best genotypes, during the final selection stage, varieties are tested in different environments (locations and years), and breeders need to estimate the phenotypic performance for main traits such as tons of cane yield per hectare (TCH) considering the genotype × environment interaction (GEI) effect. Geneticists and biometricians have used different methods and there is no clear consensus of the best method. In this study, we present a comparison of three methods, viz. Eberhart-Russel (ER), additive main effects and multiplicative interaction (AMMI) and mixed model (REML/BLUP), in a simulation study performed in the R computing environment to verify the effectiveness of each method in detecting GEI, and assess the particularities of each method from a statistical standpoint. In total, 63 cases representing different conditions were simulated, generating more than 34 million data points for analysis by each of the three methods. The results show that each method detects GEI differently in a different way, and each has some limitations. All three methods detected GEI effectively, but the mixed model showed higher sensitivity. When applying the GEI analysis, firstly it is important to verify the assumptions inherent in each method and these limitations should be taken into account when choosing the method to be used.展开更多
Human interaction becomes an important issue in the field of mobile robotics. To achieve humanfriendly naviga tion, the robot needs to recognize human on cluttered backgrounds, and this can be fulfilled by the detecti...Human interaction becomes an important issue in the field of mobile robotics. To achieve humanfriendly naviga tion, the robot needs to recognize human on cluttered backgrounds, and this can be fulfilled by the detection of human legs. The detection of human legs is advantageous because it enables detecting environmental obstacles at such heights. In this pa per, we compared the performance of an algorithm using a single laser range finder(LRF) proposed in Ref. L 1 ] with that of wellknown feature extraction approaches bounding box and circle fitting proposed in Ref. [ 2 ] by using the same laser scanned image.展开更多
Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide...Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.展开更多
The statistical model for community detection is a promising research area in network analysis.Most existing statistical models of community detection are designed for networks with a known type of community structure...The statistical model for community detection is a promising research area in network analysis.Most existing statistical models of community detection are designed for networks with a known type of community structure,but in many practical situations,the types of community structures are unknown.To cope with unknown community structures,diverse types should be considered in one model.We propose a model that incorporates the latent interaction pattern,which is regarded as the basis of constructions of diverse community structures by us.The interaction pattern can parameterize various types of community structures in one model.A collapsed Gibbs sampling inference is proposed to estimate the community assignments and other hyper-parameters.With the Pitman-Yor process as a prior,our model can automatically detect the numbers and sizes of communities without a known type of community structure beforehand.Via Bayesian inference,our model can detect some hidden interaction patterns that offer extra information for network analysis.Experiments on networks with diverse community structures demonstrate that our model outperforms four state-of-the-art models.展开更多
Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper...Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper,we propose a light-weight and robust algorithm to meet these requirements.By only two hands'trajectories,our algorithm requires no Graphic Processing Unit(GPU)acceleration,which can be used in low-cost devices.In the training stage,in order to find potential topological structures of the training trajectories,spectral clustering with eigengap heuristic is applied to cluster trajectory points.A gradient descent based algorithm is proposed to find the topological structures,which reflects main representations for each cluster.In the fine-tuning stage,a topological optimization algorithm is proposed to fine-tune the parameters of topological structures in all training data.Finally,our method not only performs more robustly compared to some popular offline action detection methods,but also obtains better detection accuracy in an extended action sequence.展开更多
Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accura...Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accurately predict heartbeat arrival time. To solve this problem, a novel black-box model is proposed to predict the next heartbeat arrival time. Heartbeat arrival time is modeled as auto-regressive process, heartbeat sending time is modeled as exogenous variable, the model' s coefficients are estimated based on the sliding window of observations and this result is used to predict the next heartbeat arrival time. Simulation shows that this adaptive auto-regressive exogenous (ARX) model can accurately capture heartbeat arrival dynamics and minimize prediction error in different network environments.展开更多
In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by f...In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object. In this paper, we present an approach to detecting the parameters of a moving ship in an inland river. This approach involves interactive calibration without a calibration reference. We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios, and we detect ship length, width, speed, and flow. We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90% for all parameters.展开更多
Falls are the most common concern among older adults or disabled peo-ple who use scooters and wheelchairs.The early detection of disabled persons’falls is required to increase the living rate of an individual or prov...Falls are the most common concern among older adults or disabled peo-ple who use scooters and wheelchairs.The early detection of disabled persons’falls is required to increase the living rate of an individual or provide support to them whenever required.In recent times,the arrival of the Internet of Things(IoT),smartphones,Artificial Intelligence(AI),wearables and so on make it easy to design fall detection mechanisms for smart homecare.The current study devel-ops an Automated Disabled People Fall Detection using Cuckoo Search Optimi-zation with Mobile Networks(ADPFD-CSOMN)model.The proposed model’s major aim is to detect and distinguish fall events from non-fall events automati-cally.To attain this,the presented ADPFD-CSOMN technique incorporates the design of the MobileNet model for the feature extraction process.Next,the CSO-based hyperparameter tuning process is executed for the MobileNet model,which shows the paper’s novelty.Finally,the Radial Basis Function(RBF)clas-sification model recognises and classifies the instances as either fall or non-fall.In order to validate the betterment of the proposed ADPFD-CSOMN model,a com-prehensive experimental analysis was conducted.The results confirmed the enhanced fall classification outcomes of the ADPFD-CSOMN model over other approaches with an accuracy of 99.17%.展开更多
Automatic face detection and localization is a key problem in many computer vision tasks. In this paper, a simple yet effective approach for detecting and locating human faces in color images is proposed. The contribu...Automatic face detection and localization is a key problem in many computer vision tasks. In this paper, a simple yet effective approach for detecting and locating human faces in color images is proposed. The contribution of this paper is twofold. First, a particular reference to face detection techniques along with a background to neural networks is given. Second, and maybe most importantly, an adaptive cubic-spline neural network is designed to be used to detect and locate human faces in uncontrolled environments. The experimental results conducted on our test set show the effectiveness of the proposed approach and it can compare favorably with other state-of-the-art approaches in the literature.展开更多
The express delivery induslry of China is relatively backward in the automation degree of critical business processes. The basic reason is that the business-related supporting data, which is scattered in the multidime...The express delivery induslry of China is relatively backward in the automation degree of critical business processes. The basic reason is that the business-related supporting data, which is scattered in the multidimensional space, is difficult to utilize and process. This paper proposes an automatic data acquisition fi-amework to resolve such difficulty, which synthetically utilize intelligent inemet of things (IoT), semantic web and complext event processing (CEP) technology. We also implement a SCEP prototype system with the capability of real-time detecting complex business events on the goods sorting line, which adopts a detection method consisting of four stages. The simulation results show that the system has good performance and feasible enough to deal with the complex business which need data support fTom multidimensional space.展开更多
Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding...Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding mode estimator that is formulated in a predictor-corrector fashion. This strategy keeps the estimated state bounded within a region of the true state trajectory, thus creating a stable and robust estimation process. The IMM method may be utilized for fault detection and diagnosis, and is classified as a model-based method. In this paper, for the purposes of fault detection, the IMM-SVSF is applied through simulation on a simple battery system which is modeled from a hybrid electric vehicle.展开更多
Composite index is always derived with the weighted aggregation of hierarchical components,which is widely utilized to distill intricate and multidimensional matters in economic and business statistics.However,the com...Composite index is always derived with the weighted aggregation of hierarchical components,which is widely utilized to distill intricate and multidimensional matters in economic and business statistics.However,the composite indices always present inevitable anomalies at different levels oriented from the calculation and expression processes of hierarchical components,thereby impairing the precise depiction of specific economic issues.In this paper,we propose VisCI,a visualization framework for anomaly detection and interactive optimization of composite index.First,LSTM-AE model is performed to detect anomalies from the lower level to the higher level of the composite index.Then,a comprehensive array of visual cues is designed to visualize anomalies,such as hierarchy and anomaly visualization.In addition,an interactive operation is provided to ensure accurate and efficient index optimization,mitigating the adverse impact of anomalies on index calculation and representation.Finally,we implement a visualization framework with interactive interfaces,facilitating both anomaly detection and intuitive composite index optimization.Case studies based on real-world datasets and expert interviews are conducted to demonstrate the effectiveness of our VisCI in commodity index anomaly exploration and anomaly optimization.展开更多
基金This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number:IMSIU-RP23008).
文摘This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences.
基金Project(51678075)supported by the National Natural Science Foundation of ChinaProject(2017GK2271)supported by the Hunan Provincial Science and Technology Department,China。
文摘Human-object interaction(HOIs)detection is a new branch of visual relationship detection,which plays an important role in the field of image understanding.Because of the complexity and diversity of image content,the detection of HOIs is still an onerous challenge.Unlike most of the current works for HOIs detection which only rely on the pairwise information of a human and an object,we propose a graph-based HOIs detection method that models context and global structure information.Firstly,to better utilize the relations between humans and objects,the detected humans and objects are regarded as nodes to construct a fully connected undirected graph,and the graph is pruned to obtain an HOI graph that only preserving the edges connecting human and object nodes.Then,in order to obtain more robust features of human and object nodes,two different attention-based feature extraction networks are proposed,which model global and local contexts respectively.Finally,the graph attention network is introduced to pass messages between different nodes in the HOI graph iteratively,and detect the potential HOIs.Experiments on V-COCO and HICO-DET datasets verify the effectiveness of the proposed method,and show that it is superior to many existing methods.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
文摘Many studies revealed unconscious effects on conscious processing. However, in this study, we tried to investigate whether unconscious processes could interact with each other by using simultaneously presented face pictures with the same or a different unconscious valence (SUV versus DUV). In the first event-related potential (ERP) study, DUV elicited a smaller N2 as compared with SUV. In the second functional magnetic resonance imaging (fMRI) experiment, the left middle frontal gyrus (MFG) was activated under DUV condition in comparison to SUV condition. These results support the idea of interactions between unconscious processes (unconscious mismatch detection). The theoretical implications are discussed in the light of the global neuronal workspace theory.
文摘This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.
基金This research was supported by a grant(2021R1F1A1063634)of the Basic Science Research Program through the National Research Foundation(NRF)funded by the Ministry of Education,Republic of Korea.
文摘Human object interaction(HOI)recognition plays an important role in the designing of surveillance and monitoring systems for healthcare,sports,education,and public areas.It involves localizing the human and object targets and then identifying the interactions between them.However,it is a challenging task that highly depends on the extraction of robust and distinctive features from the targets and the use of fast and efficient classifiers.Hence,the proposed system offers an automated body-parts-based solution for HOI recognition.This system uses RGB(red,green,blue)images as input and segments the desired parts of the images through a segmentation technique based on the watershed algorithm.Furthermore,a convex hullbased approach for extracting key body parts has also been introduced.After identifying the key body parts,two types of features are extracted.Moreover,the entire feature vector is reduced using a dimensionality reduction technique called t-SNE(t-distributed stochastic neighbor embedding).Finally,a multinomial logistic regression classifier is utilized for identifying class labels.A large publicly available dataset,MPII(Max Planck Institute Informatics)Human Pose,has been used for system evaluation.The results prove the validity of the proposed system as it achieved 87.5%class recognition accuracy.
基金supported by Priority Research Centers Program through NRF funded by MEST(2018R1A6A1A03024003)the Grand Information Technology Research Center support program IITP-2020-2020-0-01612 supervised by the IITP by MSIT,Korea.
文摘In the new era of technology,daily human activities are becoming more challenging in terms of monitoring complex scenes and backgrounds.To understand the scenes and activities from human life logs,human-object interaction(HOI)is important in terms of visual relationship detection and human pose estimation.Activities understanding and interaction recognition between human and object along with the pose estimation and interaction modeling have been explained.Some existing algorithms and feature extraction procedures are complicated including accurate detection of rare human postures,occluded regions,and unsatisfactory detection of objects,especially small-sized objects.The existing HOI detection techniques are instancecentric(object-based)where interaction is predicted between all the pairs.Such estimation depends on appearance features and spatial information.Therefore,we propose a novel approach to demonstrate that the appearance features alone are not sufficient to predict the HOI.Furthermore,we detect the human body parts by using the Gaussian Matric Model(GMM)followed by object detection using YOLO.We predict the interaction points which directly classify the interaction and pair them with densely predicted HOI vectors by using the interaction algorithm.The interactions are linked with the human and object to predict the actions.The experiments have been performed on two benchmark HOI datasets demonstrating the proposed approach.
文摘Brazil is the world leader in sugarcane production and the largest sugar exporter. Developing new varieties is one of the main factors that contribute to yield increase. In order to select the best genotypes, during the final selection stage, varieties are tested in different environments (locations and years), and breeders need to estimate the phenotypic performance for main traits such as tons of cane yield per hectare (TCH) considering the genotype × environment interaction (GEI) effect. Geneticists and biometricians have used different methods and there is no clear consensus of the best method. In this study, we present a comparison of three methods, viz. Eberhart-Russel (ER), additive main effects and multiplicative interaction (AMMI) and mixed model (REML/BLUP), in a simulation study performed in the R computing environment to verify the effectiveness of each method in detecting GEI, and assess the particularities of each method from a statistical standpoint. In total, 63 cases representing different conditions were simulated, generating more than 34 million data points for analysis by each of the three methods. The results show that each method detects GEI differently in a different way, and each has some limitations. All three methods detected GEI effectively, but the mixed model showed higher sensitivity. When applying the GEI analysis, firstly it is important to verify the assumptions inherent in each method and these limitations should be taken into account when choosing the method to be used.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2012-C1090-1221-0010)The MKE,Korea,under the Human Resources Development Program for Convergence Robot Specialists support programsu-pervised by the NIPA(NIPA-2012-H1502-12-1002)Basic Science Research Program through the NRF funded by the MEST(2011-0025980)and MEST(2012-0005487)
文摘Human interaction becomes an important issue in the field of mobile robotics. To achieve humanfriendly naviga tion, the robot needs to recognize human on cluttered backgrounds, and this can be fulfilled by the detection of human legs. The detection of human legs is advantageous because it enables detecting environmental obstacles at such heights. In this pa per, we compared the performance of an algorithm using a single laser range finder(LRF) proposed in Ref. L 1 ] with that of wellknown feature extraction approaches bounding box and circle fitting proposed in Ref. [ 2 ] by using the same laser scanned image.
文摘Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.
基金Project supported by Beijing Natural Science Foundation,China(Grant Nos.L181010 and 4172054)the National Key R&D Program of China(Grant No.2016YFB0801100)the National Basic Research Program of China(Grant No.2013CB329605)。
文摘The statistical model for community detection is a promising research area in network analysis.Most existing statistical models of community detection are designed for networks with a known type of community structure,but in many practical situations,the types of community structures are unknown.To cope with unknown community structures,diverse types should be considered in one model.We propose a model that incorporates the latent interaction pattern,which is regarded as the basis of constructions of diverse community structures by us.The interaction pattern can parameterize various types of community structures in one model.A collapsed Gibbs sampling inference is proposed to estimate the community assignments and other hyper-parameters.With the Pitman-Yor process as a prior,our model can automatically detect the numbers and sizes of communities without a known type of community structure beforehand.Via Bayesian inference,our model can detect some hidden interaction patterns that offer extra information for network analysis.Experiments on networks with diverse community structures demonstrate that our model outperforms four state-of-the-art models.
基金Our research has been supported in part by National Natural Science Foundation of China under Grants 61673261 and 61703273.We gratefully acknowledge the support from some companies.
文摘Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper,we propose a light-weight and robust algorithm to meet these requirements.By only two hands'trajectories,our algorithm requires no Graphic Processing Unit(GPU)acceleration,which can be used in low-cost devices.In the training stage,in order to find potential topological structures of the training trajectories,spectral clustering with eigengap heuristic is applied to cluster trajectory points.A gradient descent based algorithm is proposed to find the topological structures,which reflects main representations for each cluster.In the fine-tuning stage,a topological optimization algorithm is proposed to fine-tune the parameters of topological structures in all training data.Finally,our method not only performs more robustly compared to some popular offline action detection methods,but also obtains better detection accuracy in an extended action sequence.
基金the National Basic Research Program of China(No.2003CB314806)China Next Generation Intemet Project(CNGI-04-6-2T)
文摘Predicting heartbeat message arrival time is crucial for the quality of failure detection service over intemet. However, intemet dynamic characteristics make it very difficult to understand message behavior and accurately predict heartbeat arrival time. To solve this problem, a novel black-box model is proposed to predict the next heartbeat arrival time. Heartbeat arrival time is modeled as auto-regressive process, heartbeat sending time is modeled as exogenous variable, the model' s coefficients are estimated based on the sliding window of observations and this result is used to predict the next heartbeat arrival time. Simulation shows that this adaptive auto-regressive exogenous (ARX) model can accurately capture heartbeat arrival dynamics and minimize prediction error in different network environments.
基金supported by Fund of National Science&Technology monumental projects under Grants NO.61401239,NO.2012-364-641-209
文摘In traffic-monitoring systems, numerous vision-based approaches have been used to detect vehicle parameters. However, few of these approaches have been used in waterway transport because of the complexity created by factors such as rippling water and lack of calibration object. In this paper, we present an approach to detecting the parameters of a moving ship in an inland river. This approach involves interactive calibration without a calibration reference. We detect a moving ship using an optimized visual foreground detection algorithm that eliminates false detection in dynamic water scenarios, and we detect ship length, width, speed, and flow. We trialed our parameter-detection technique in the Beijing-Hangzhou Grand Canal and found that detection accuracy was greater than 90% for all parameters.
文摘Falls are the most common concern among older adults or disabled peo-ple who use scooters and wheelchairs.The early detection of disabled persons’falls is required to increase the living rate of an individual or provide support to them whenever required.In recent times,the arrival of the Internet of Things(IoT),smartphones,Artificial Intelligence(AI),wearables and so on make it easy to design fall detection mechanisms for smart homecare.The current study devel-ops an Automated Disabled People Fall Detection using Cuckoo Search Optimi-zation with Mobile Networks(ADPFD-CSOMN)model.The proposed model’s major aim is to detect and distinguish fall events from non-fall events automati-cally.To attain this,the presented ADPFD-CSOMN technique incorporates the design of the MobileNet model for the feature extraction process.Next,the CSO-based hyperparameter tuning process is executed for the MobileNet model,which shows the paper’s novelty.Finally,the Radial Basis Function(RBF)clas-sification model recognises and classifies the instances as either fall or non-fall.In order to validate the betterment of the proposed ADPFD-CSOMN model,a com-prehensive experimental analysis was conducted.The results confirmed the enhanced fall classification outcomes of the ADPFD-CSOMN model over other approaches with an accuracy of 99.17%.
文摘Automatic face detection and localization is a key problem in many computer vision tasks. In this paper, a simple yet effective approach for detecting and locating human faces in color images is proposed. The contribution of this paper is twofold. First, a particular reference to face detection techniques along with a background to neural networks is given. Second, and maybe most importantly, an adaptive cubic-spline neural network is designed to be used to detect and locate human faces in uncontrolled environments. The experimental results conducted on our test set show the effectiveness of the proposed approach and it can compare favorably with other state-of-the-art approaches in the literature.
文摘The express delivery induslry of China is relatively backward in the automation degree of critical business processes. The basic reason is that the business-related supporting data, which is scattered in the multidimensional space, is difficult to utilize and process. This paper proposes an automatic data acquisition fi-amework to resolve such difficulty, which synthetically utilize intelligent inemet of things (IoT), semantic web and complext event processing (CEP) technology. We also implement a SCEP prototype system with the capability of real-time detecting complex business events on the goods sorting line, which adopts a detection method consisting of four stages. The simulation results show that the system has good performance and feasible enough to deal with the complex business which need data support fTom multidimensional space.
文摘Recently, a new type of IMM (interacting multiple model) method was introduced based on the relatively new SVSF (smooth variable structure filter), and is referred to as the IMM-SVSF. The SVSF is a type of sliding mode estimator that is formulated in a predictor-corrector fashion. This strategy keeps the estimated state bounded within a region of the true state trajectory, thus creating a stable and robust estimation process. The IMM method may be utilized for fault detection and diagnosis, and is classified as a model-based method. In this paper, for the purposes of fault detection, the IMM-SVSF is applied through simulation on a simple battery system which is modeled from a hybrid electric vehicle.
基金National Natural Science Foundation of China(No.62277013,No.62177040)National Statistical Science Research Project(No.2022LY099)+1 种基金Public Welfare Plan Research Project of Zhejiang Provincial Science and Technology Department(No.TGG23H260008)Zhejiang Statistical Science Research Project.
文摘Composite index is always derived with the weighted aggregation of hierarchical components,which is widely utilized to distill intricate and multidimensional matters in economic and business statistics.However,the composite indices always present inevitable anomalies at different levels oriented from the calculation and expression processes of hierarchical components,thereby impairing the precise depiction of specific economic issues.In this paper,we propose VisCI,a visualization framework for anomaly detection and interactive optimization of composite index.First,LSTM-AE model is performed to detect anomalies from the lower level to the higher level of the composite index.Then,a comprehensive array of visual cues is designed to visualize anomalies,such as hierarchy and anomaly visualization.In addition,an interactive operation is provided to ensure accurate and efficient index optimization,mitigating the adverse impact of anomalies on index calculation and representation.Finally,we implement a visualization framework with interactive interfaces,facilitating both anomaly detection and intuitive composite index optimization.Case studies based on real-world datasets and expert interviews are conducted to demonstrate the effectiveness of our VisCI in commodity index anomaly exploration and anomaly optimization.