The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxid...The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxidated to examine the effects of O2 levels,the wavelength of incident light,and the concentration of Fe on the photoproduction of DIC.Increasing the O2 abundance enhanced photodegradation of SRHA.The rate of DIC photoproduction under air saturation in the first 24 h(4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation,but fell by only 36% under N2 saturation.To evaluate the relative importance of UV-B,UV-A,and visible radiation in the photodegradation,we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters.The results indicated that the UV-B,UV-A and visible wavelengths accounted for 31.8%,32.6% and 25.6%,respectively,of DIC production with simulated sunlight irradiation.The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach.When 20 μmol/L desferrioxamine mesylate(DFOM,a strong Fe complexing ligand) was added,the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.展开更多
Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-solub...Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-soluble organic C(WSOC),easily oxidizable organic C(EOC),humic C fractions,aggregate-associated C,aggregate stability,and humic acid(HA) composition along an east-west transect across Qinghai-Tibet Plateau,and explored their spatial patterns and controlling factors.The contents of SOC,WSOC,EOC,humic C fractions and aggregate-associated C,the proportions of macroaggregates(2-0.25) and micro-aggregates(0.25-0.053 mm),and the aggregate stability indices all increased in the order alpine desert < alpine steppe < alpine meadow.The alkyl C,O-alkyl C,and aliphatic C/aromatic C ratio of HA increased as alpine desert < alpine meadow < alpine steppe,and the trends were reverse for the aromatic C and HB/HI ratio.Mean annual precipitation and aboveground biomass weresignificantly correlated with the contents of SOC and its fractions,the proportions of macro- and microaggregates,and the aggregate stability indices along this transect.Among all these C fractions,SOC content and aggregate stability were more closely associated with humic C and silt and clay sized C in comparison with WSOC,EOC,and macro- and microaggregate C.The results suggested that alpine meadow soils containing higher SOC exhibited high soil aggregation and aggregate stability.Mean annual precipitation should be the main climate factor controlling the spatial patterns of SOC,soil aggregation,and aggregate stability in this region.The resistant and stable C fractions rather than labile C fractions are the major determinant of SOC stocks and aggregate stability.展开更多
Black carbon (BC) can strongly adsorb hydrophobic organic compounds (HOCs). The HOC sorption to coated BC could be attenuated in soil and sediment compared with that of the parent BC. To study the potential causes...Black carbon (BC) can strongly adsorb hydrophobic organic compounds (HOCs). The HOC sorption to coated BC could be attenuated in soil and sediment compared with that of the parent BC. To study the potential causes of the sorption attenuation, humic acid (HA) and BC were isolated. Phenanthrene (PHE) was selected as the representative of HOCs. BC was coated with the precipitated HA. The PHE sorption to the HA-coated BC was determined. The HA coatings on BC could result in the significant sorption attenuation of PHE to BC. The attenuation varied in different HA origin and was positively correlated to the aromaticity of HA. The attenuation could be explained by the direct competition between HA and PHE for the available sorption sites on BC and the reduction of the available sorption sites as a result of the pore blockage of BC caused by the HA coatings. Therefore, the HA coatings on BC was one potential cause of the attenuation of HOC sorption to BC in soil and sediment.展开更多
[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventi...[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PDwholetree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus.展开更多
CuO particles were attempted to fill in the channel of multi-walled carbon nanotubes (MWCNTs) as novel catalytic materials CuO@MWCNTs used for ozonation of humic acids (HA) in aqueous solution.Catalyst samples were ch...CuO particles were attempted to fill in the channel of multi-walled carbon nanotubes (MWCNTs) as novel catalytic materials CuO@MWCNTs used for ozonation of humic acids (HA) in aqueous solution.Catalyst samples were characterized by transmission electron microscopy (TEM),X-ray diffraction (XRD),thermogravimetric analysis (TG) and X-ray photoelectron spectroscopy (XPS).The removal efficiency of HA was promoted in the presence of CuO@MWCNTs compared with that of Al2O3-supported CuO catalyst (CuO/Al2O3) and CuO-coating MWCNTs catalyst (CuO/MWCNTs).The strong synergetic effect in the confinement environment on CuO nanoparticles can attribute to the locally higher pressure due to the lower potential energy of reactants in the channels.Strong interaction happened between the catalyst and reactants,which promoted the decomposition of ozone and the generation of OH.The results of experimental and theoretical investigation confirmed that CuO@MWCNTs promotes the initiation and generation of OH,hence accelerating the degradation of organic pollutants.展开更多
Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous te...Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline(TC:25 mg·L^-1)was studied.The adsorption equilibrium time for CHA400-Fe(Ⅲ)to TC was 6 h faster and the adsorption removal efficiency(Re)was two times higher than that of HA/CHA.The adsorption Reof CHA400-Fe(Ⅲ)loaded 10%iron[CHA400-(10%)Fe(Ⅲ)]to TC could reach 99.8%at 8 h and still kept80.6%after 8 cycles.The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R^2N 0.99),indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents.The main adsorption mechanisms of TC were complexation Fe(III)and hydrophobic distribution.Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(Ⅲ)at lowly p H(2)and highly p H(8–10)respectively,leaded to the relatively low adsorption capacity and more notable influence of ion concentration.When the p H was between 4 and 8,TC mainly existed in neutral molecules(TCH2),so the influence of ion concentration was not obvious.The dynamic adsorption results showed that the CHA400-(10%)Fe(Ⅲ)could continuously treat about 2.4 L TC(27 mg·L^-1)wastewater with the effluent concentration as low as 0.068 mg·L^-1.Our study suggested a broad application prospect of a new,effective,lowcost and environment-friendly adsorbent CHA400-(10%)Fe(Ⅲ)for treatment of low-concentration TC polluted wastewater.展开更多
tWe proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcina-tion method at the temperatures of 850-1000°C,which were used for CO_(2) electrochemical reduction to CO.The p...tWe proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcina-tion method at the temperatures of 850-1000°C,which were used for CO_(2) electrochemical reduction to CO.The porous carbon was prepared by carbonizing cheap and abundant humic acid.The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed.The results showed that the single-Ni-atom catalyst activated at 950°C showed an optimum catalytic performance,and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mAcm^(-2)at-0.9 V vs.reversible hydrogen electrode(RHE).Additionally,the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation,suggesting that it possessed an excellent stability.The structure-activity relations indicate that the variation in the CO_(2) electroche-mical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N,the evaporation of Ni and N,the decrease in pore volume,and the change in graphitization degree.展开更多
The changes in humic substances (HS) is fundamental in detecting soil carbon sequestration mechanisms in natural and cultivated environments. Based on a long-term trial, the amounts of water dissolved substances (...The changes in humic substances (HS) is fundamental in detecting soil carbon sequestration mechanisms in natural and cultivated environments. Based on a long-term trial, the amounts of water dissolved substances (WSS), humic acid (HA), fulvic acid (FA) and humin (HU) were determined to explore the impact of long-term fertilization on HS. Increases in the amounts of WSS, HA, FA and HU were significant different among the treatments with manure. A significant correlation was found between the increased soil organic carbon (SOC) and HS (R^2=0.98, P〈0.01). The change in the E4/E6 ratio was significantly correlated with the increased SOC (R2=0.88, P〈0.01), HA (R^2=0.91, P〈0.01), FA (R^2=0.91, P〈0.01) and HU (R^2=0.88, P〈0.01). The cluster was mainly divided into two parts as manure fertilization and inorganic fertilization, based on the increases in HA, FA and HU. These results suggest that long term fertilization with manure favours carbon sequestration in HS and is mainly stabilized as HU, while the HA becomes more aliphatic. We conclude that increases in SOC can be linked to changes in the molecular characteristics of HS fractions under long term fertilization.展开更多
Natural dissolved organic carbon (DOC) consists of different bio-molecular classes of compounds that are currently very difficult and time-consuming to isolate as individual compounds. However, it is possible to separ...Natural dissolved organic carbon (DOC) consists of different bio-molecular classes of compounds that are currently very difficult and time-consuming to isolate as individual compounds. However, it is possible to separate natural DOC into hydrophobic and hydrophilic fractions. Such characterisation approaches are becoming increasingly important because, over the past 20 years natural DOC concentrations have been rising rapidly in many parts of the world, most likely influenced by climate change. Higher DOC concentrations in drinking water catchments present a serious problem for the water industry because DOC can form disinfection by-products DBPs during water treatment (e.g. chlorination). Hence, there is an urgent need to better characterise natural DOC before, during and after water treatment. However, current DOC fractionation procedures are extremely laborious requiring days and continual manual monitoring to separate sufficient quantities of DOC for subsequent analysis. This seriously limits sample throughput and the parameter space which can be studied. In this paper, we propose a much more rapid semi-automated method (12.5 hours/litre/sample) which utilises readily available equipment, i.e., HPLC pump or similar and sequential columns of Amberlite DAX 8 and XAD 4 resins. The method reduces the manual input from continual attention to minutes. This paper describes the development of the method and its application in the fractionation of natural DOC from reservoir and lake samples fed from upland peat-land catchments. Recoveries are found to be comparable to those using the manual technique, with the dominant component being hydrophobic acid accounting for 35% - 40% of the natural DOC with the second largest, being hydrophilic acid at 20% - 27%.展开更多
Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, hum...Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, humic substances (HS) content, humic acids (HA) content, fulvic acids (FA), hot water extractable carbon (Chw) content and content total and labile trace elements content. Humic substances quality was assessed by HA/FA ratio and by coloured indexes measured in ultraviolet and visible UV-VIS spectral range. The total and labile contents of Zn, Cd, Cu, Co, Pb, Mo and Se were determined by flame or electro-thermal atomic absorption spectrometry after extraction of the soil samples in the aqua regia (total content) and in the solution of 0.01 M CaCI2. Total and labile trace elements content was correlated with determined carbon fractions and soil reaction. Results showed that studied soils content low amount of TOC and had low quality of humic substances. HA/FA ratio was less than 1 and colour indexes were higher than 4. All determined carbon fractions correlated with labile form of Zn and Cd. Correlation between soil reaction and total zinc content was found. Significant effect of humic substances content on to water-soluble forms of heavy metals was detected.展开更多
基金Supported by the National Science and Engineering Research Committee of Canada (No213327)
文摘The photochemical mineralization of dissolved organic carbon(DOC) to dissolved inorganic carbon(DIC) is a key process in carbon cycling.Using a Suntest CPS solar simulator,Suwannee River humic acid(SRHA) was photooxidated to examine the effects of O2 levels,the wavelength of incident light,and the concentration of Fe on the photoproduction of DIC.Increasing the O2 abundance enhanced photodegradation of SRHA.The rate of DIC photoproduction under air saturation in the first 24 h(4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation,but fell by only 36% under N2 saturation.To evaluate the relative importance of UV-B,UV-A,and visible radiation in the photodegradation,we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters.The results indicated that the UV-B,UV-A and visible wavelengths accounted for 31.8%,32.6% and 25.6%,respectively,of DIC production with simulated sunlight irradiation.The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach.When 20 μmol/L desferrioxamine mesylate(DFOM,a strong Fe complexing ligand) was added,the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.
基金funded by the National Natural Science Foundation of China (Grant Nos. 31470506 and 41471196)
文摘Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-soluble organic C(WSOC),easily oxidizable organic C(EOC),humic C fractions,aggregate-associated C,aggregate stability,and humic acid(HA) composition along an east-west transect across Qinghai-Tibet Plateau,and explored their spatial patterns and controlling factors.The contents of SOC,WSOC,EOC,humic C fractions and aggregate-associated C,the proportions of macroaggregates(2-0.25) and micro-aggregates(0.25-0.053 mm),and the aggregate stability indices all increased in the order alpine desert < alpine steppe < alpine meadow.The alkyl C,O-alkyl C,and aliphatic C/aromatic C ratio of HA increased as alpine desert < alpine meadow < alpine steppe,and the trends were reverse for the aromatic C and HB/HI ratio.Mean annual precipitation and aboveground biomass weresignificantly correlated with the contents of SOC and its fractions,the proportions of macro- and microaggregates,and the aggregate stability indices along this transect.Among all these C fractions,SOC content and aggregate stability were more closely associated with humic C and silt and clay sized C in comparison with WSOC,EOC,and macro- and microaggregate C.The results suggested that alpine meadow soils containing higher SOC exhibited high soil aggregation and aggregate stability.Mean annual precipitation should be the main climate factor controlling the spatial patterns of SOC,soil aggregation,and aggregate stability in this region.The resistant and stable C fractions rather than labile C fractions are the major determinant of SOC stocks and aggregate stability.
基金Project supported by the Natural Science Foundation of Shandong Province (No.Y2003B04).
文摘Black carbon (BC) can strongly adsorb hydrophobic organic compounds (HOCs). The HOC sorption to coated BC could be attenuated in soil and sediment compared with that of the parent BC. To study the potential causes of the sorption attenuation, humic acid (HA) and BC were isolated. Phenanthrene (PHE) was selected as the representative of HOCs. BC was coated with the precipitated HA. The PHE sorption to the HA-coated BC was determined. The HA coatings on BC could result in the significant sorption attenuation of PHE to BC. The attenuation varied in different HA origin and was positively correlated to the aromaticity of HA. The attenuation could be explained by the direct competition between HA and PHE for the available sorption sites on BC and the reduction of the available sorption sites as a result of the pore blockage of BC caused by the HA coatings. Therefore, the HA coatings on BC was one potential cause of the attenuation of HOC sorption to BC in soil and sediment.
基金Supported by the National Natural Science Foundation of China(41571303)Science and Technology Development Plan of Tai’an City,Shandong Province(2018HZ0115)
文摘[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PDwholetree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus.
基金Sponsored by the State Key Lab of Urban Water Resource and Environment (Grant No.ESK200801)
文摘CuO particles were attempted to fill in the channel of multi-walled carbon nanotubes (MWCNTs) as novel catalytic materials CuO@MWCNTs used for ozonation of humic acids (HA) in aqueous solution.Catalyst samples were characterized by transmission electron microscopy (TEM),X-ray diffraction (XRD),thermogravimetric analysis (TG) and X-ray photoelectron spectroscopy (XPS).The removal efficiency of HA was promoted in the presence of CuO@MWCNTs compared with that of Al2O3-supported CuO catalyst (CuO/Al2O3) and CuO-coating MWCNTs catalyst (CuO/MWCNTs).The strong synergetic effect in the confinement environment on CuO nanoparticles can attribute to the locally higher pressure due to the lower potential energy of reactants in the channels.Strong interaction happened between the catalyst and reactants,which promoted the decomposition of ozone and the generation of OH.The results of experimental and theoretical investigation confirmed that CuO@MWCNTs promotes the initiation and generation of OH,hence accelerating the degradation of organic pollutants.
基金financially supported by the National Natural Science Foundation of China(No.51641209)。
文摘Humic acid(HA)was carbonized at 300,400 and 500℃ and then functionalized with 1 wt%–12 wt%Fe(Ⅲ)respectively[CHA300/400/500-Fe(Ⅲ)].Adsorption of such Fe(III)-functionalized carbonized HA as adsorbents to aqueous tetracycline(TC:25 mg·L^-1)was studied.The adsorption equilibrium time for CHA400-Fe(Ⅲ)to TC was 6 h faster and the adsorption removal efficiency(Re)was two times higher than that of HA/CHA.The adsorption Reof CHA400-Fe(Ⅲ)loaded 10%iron[CHA400-(10%)Fe(Ⅲ)]to TC could reach 99.8%at 8 h and still kept80.6%after 8 cycles.The adsorption kinetics were well fitted to the pseudo-second-order equation and the adsorption isotherms could be well delineated via Langmuir equations(R^2N 0.99),indicating that the homogeneous chemical adsorption of TC occurred on the adsorbents.The main adsorption mechanisms of TC were complexation Fe(III)and hydrophobic distribution.Electropositive and electronegative repulsion between TC and CHA400-(10%)Fe(Ⅲ)at lowly p H(2)and highly p H(8–10)respectively,leaded to the relatively low adsorption capacity and more notable influence of ion concentration.When the p H was between 4 and 8,TC mainly existed in neutral molecules(TCH2),so the influence of ion concentration was not obvious.The dynamic adsorption results showed that the CHA400-(10%)Fe(Ⅲ)could continuously treat about 2.4 L TC(27 mg·L^-1)wastewater with the effluent concentration as low as 0.068 mg·L^-1.Our study suggested a broad application prospect of a new,effective,lowcost and environment-friendly adsorbent CHA400-(10%)Fe(Ⅲ)for treatment of low-concentration TC polluted wastewater.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.22308006 and 22278001)the Anhui Province Major Industrial Innovation Plan(Grant No.AHZDCYCXLSDT2023-04)+3 种基金the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2022-006)the Natural Science Foundation of Anhui Provincial Education Department(Grant No.KJ2021A0407)the Youth Natural Science Foundation of Anhui University of Technology(GrantNt o.QZ202216)UndergraduateInnovation and Entrepreneurship Training Program of Anhui Province(Grant No.S202310360214).
文摘tWe proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcina-tion method at the temperatures of 850-1000°C,which were used for CO_(2) electrochemical reduction to CO.The porous carbon was prepared by carbonizing cheap and abundant humic acid.The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed.The results showed that the single-Ni-atom catalyst activated at 950°C showed an optimum catalytic performance,and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mAcm^(-2)at-0.9 V vs.reversible hydrogen electrode(RHE).Additionally,the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation,suggesting that it possessed an excellent stability.The structure-activity relations indicate that the variation in the CO_(2) electroche-mical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N,the evaporation of Ni and N,the decrease in pore volume,and the change in graphitization degree.
基金supported by the National Natural Science Foundation of China (30873470)the National Special Research Fund for Non-Profit Sector (Agriculture) (201203030)the grant from Qingdao Agricultural University, China (631214)
文摘The changes in humic substances (HS) is fundamental in detecting soil carbon sequestration mechanisms in natural and cultivated environments. Based on a long-term trial, the amounts of water dissolved substances (WSS), humic acid (HA), fulvic acid (FA) and humin (HU) were determined to explore the impact of long-term fertilization on HS. Increases in the amounts of WSS, HA, FA and HU were significant different among the treatments with manure. A significant correlation was found between the increased soil organic carbon (SOC) and HS (R^2=0.98, P〈0.01). The change in the E4/E6 ratio was significantly correlated with the increased SOC (R2=0.88, P〈0.01), HA (R^2=0.91, P〈0.01), FA (R^2=0.91, P〈0.01) and HU (R^2=0.88, P〈0.01). The cluster was mainly divided into two parts as manure fertilization and inorganic fertilization, based on the increases in HA, FA and HU. These results suggest that long term fertilization with manure favours carbon sequestration in HS and is mainly stabilized as HU, while the HA becomes more aliphatic. We conclude that increases in SOC can be linked to changes in the molecular characteristics of HS fractions under long term fertilization.
文摘Natural dissolved organic carbon (DOC) consists of different bio-molecular classes of compounds that are currently very difficult and time-consuming to isolate as individual compounds. However, it is possible to separate natural DOC into hydrophobic and hydrophilic fractions. Such characterisation approaches are becoming increasingly important because, over the past 20 years natural DOC concentrations have been rising rapidly in many parts of the world, most likely influenced by climate change. Higher DOC concentrations in drinking water catchments present a serious problem for the water industry because DOC can form disinfection by-products DBPs during water treatment (e.g. chlorination). Hence, there is an urgent need to better characterise natural DOC before, during and after water treatment. However, current DOC fractionation procedures are extremely laborious requiring days and continual manual monitoring to separate sufficient quantities of DOC for subsequent analysis. This seriously limits sample throughput and the parameter space which can be studied. In this paper, we propose a much more rapid semi-automated method (12.5 hours/litre/sample) which utilises readily available equipment, i.e., HPLC pump or similar and sequential columns of Amberlite DAX 8 and XAD 4 resins. The method reduces the manual input from continual attention to minutes. This paper describes the development of the method and its application in the fractionation of natural DOC from reservoir and lake samples fed from upland peat-land catchments. Recoveries are found to be comparable to those using the manual technique, with the dominant component being hydrophobic acid accounting for 35% - 40% of the natural DOC with the second largest, being hydrophilic acid at 20% - 27%.
文摘Luvisols, Stagnogleys and Cambisols, although less fertile, are used intensively for mixed farming, grazing and as forestland. Therefore we aimed our study at determination of total organic carbon (TOC) content, humic substances (HS) content, humic acids (HA) content, fulvic acids (FA), hot water extractable carbon (Chw) content and content total and labile trace elements content. Humic substances quality was assessed by HA/FA ratio and by coloured indexes measured in ultraviolet and visible UV-VIS spectral range. The total and labile contents of Zn, Cd, Cu, Co, Pb, Mo and Se were determined by flame or electro-thermal atomic absorption spectrometry after extraction of the soil samples in the aqua regia (total content) and in the solution of 0.01 M CaCI2. Total and labile trace elements content was correlated with determined carbon fractions and soil reaction. Results showed that studied soils content low amount of TOC and had low quality of humic substances. HA/FA ratio was less than 1 and colour indexes were higher than 4. All determined carbon fractions correlated with labile form of Zn and Cd. Correlation between soil reaction and total zinc content was found. Significant effect of humic substances content on to water-soluble forms of heavy metals was detected.