In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymeriz...In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.展开更多
Hydrolytic degradation of the herbicide diclofop methyl was investigated in the multi pH deionized water, natural aquatic systems and soil suspensions. Resulting data indicated that the herbicide was stable in the aci...Hydrolytic degradation of the herbicide diclofop methyl was investigated in the multi pH deionized water, natural aquatic systems and soil suspensions. Resulting data indicated that the herbicide was stable in the acidic and nearly neutral solutions for at least 15 d. The herbicide diclofop methyl rapidly dissipated in the natural aquatic systems and soil suspensions with half lives less than 4 d. Methyl CD(partially methylated β cyclodextrin) improved its hydrolytic degradation in the pH 8 deionized water and natural aquatic systems while humic acid inhibited its hydrolytic degradation at the same conditions. But dissolved organic matter in the natural aquatic systems and soil suspensions increased its hydrolysis. Two catalysis mechanisms were introduced to describe the effects of cyclodextrin and organic matter on its hydrolytic metabolism. Though inorganic ions maybe improved its hydrolysis reaction in the natural aquatic systems, Fe 2+ and Cu 2+ did not form complexes with the herbicide and had poor influences on its hydrolytic degradation whether cyclodextrin was added or not.展开更多
Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the propert...Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the properties of different hydrolyzed PVA grades, it is generally chemically modified with various cross-linkers. Here, different degree hydrolyzed PVA grades with enhanced properties were achieved by cross-linking with boric acid. These samples were then characterized by Differential Scanning Calorimetry (DSC) and Gel permeation chromatography (GPC). For further analysis a film of samples were prepared by casting on glass plate. The effects of amount of boric acid and degree of hydrolysis of PVA on performance properties like tensile strength, pencil hardness and thermal properties like glass transition temperature were studied. The results showed that by cross-linking there was an increase in mechanical strength and thermal property.展开更多
以磺化腐植酸(SHA)、丙烯酸(AA)、聚乙烯醇(PVA)为原料,制备了SHA/AA/PVA有机保水剂。采用响应曲面法对SHA/AA/PVA的合成工艺进行优化,并研究了其表面形貌、吸水性能及保水应用性能。结果表明,0.5 g PVA、1 g SHA、5.08 g 70%中和度AA、...以磺化腐植酸(SHA)、丙烯酸(AA)、聚乙烯醇(PVA)为原料,制备了SHA/AA/PVA有机保水剂。采用响应曲面法对SHA/AA/PVA的合成工艺进行优化,并研究了其表面形貌、吸水性能及保水应用性能。结果表明,0.5 g PVA、1 g SHA、5.08 g 70%中和度AA、0.06 g MBA、0.48 g KPS、反应温度75℃为SHA/AA/PVA有机保水剂的最优制备工艺,其吸水率为483.29 g/g。保水剂具有明显的网状结构,有利于水的进入和养分的保存。保水剂吸水12 h后趋近于饱和,且在吸收一定量水分后可以对干燥环境进行缓慢释放,从而保持沙土湿润,为植物生长提供所需水分。展开更多
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan,China
文摘In this work,a novel alcohol alkali hydrolysis method was explored for the preparation of terephthalic acid(TPA)from waste polyethylene terephthalate(PET).First,a series of single factor experiments on the depolymerization rate of waste PET bottles and the yield of TPA were conducted to determine the optimized experimental conditions,in terms of reaction time,reaction temperature,dosage of ethylene glycol and sodium bicarbonate,amount of distilled water and stirring rate.Then IR spectra and elemental analysis were carried out for the characterization of obtained product.Under optimal experimental conditions,over 98%PET can be depolymerized into the target product(TPA)and the purity and yield of TPA are over 97%and 94%,respectively.Both the experimental and analytical results support a feasible process for the preparation of TPA from waste PET.It is expected that this alcohol alkali hydrolysis method can promise an effective way for the sustainable recycling of waste PET.
文摘Hydrolytic degradation of the herbicide diclofop methyl was investigated in the multi pH deionized water, natural aquatic systems and soil suspensions. Resulting data indicated that the herbicide was stable in the acidic and nearly neutral solutions for at least 15 d. The herbicide diclofop methyl rapidly dissipated in the natural aquatic systems and soil suspensions with half lives less than 4 d. Methyl CD(partially methylated β cyclodextrin) improved its hydrolytic degradation in the pH 8 deionized water and natural aquatic systems while humic acid inhibited its hydrolytic degradation at the same conditions. But dissolved organic matter in the natural aquatic systems and soil suspensions increased its hydrolysis. Two catalysis mechanisms were introduced to describe the effects of cyclodextrin and organic matter on its hydrolytic metabolism. Though inorganic ions maybe improved its hydrolysis reaction in the natural aquatic systems, Fe 2+ and Cu 2+ did not form complexes with the herbicide and had poor influences on its hydrolytic degradation whether cyclodextrin was added or not.
文摘Polyvinyl alcohol (PVA) is water-soluble polymer manufactured by the saponification of polyvinyl acetate. The physical properties and its specific application depend on the degree of hydrolysis. To enhance the properties of different hydrolyzed PVA grades, it is generally chemically modified with various cross-linkers. Here, different degree hydrolyzed PVA grades with enhanced properties were achieved by cross-linking with boric acid. These samples were then characterized by Differential Scanning Calorimetry (DSC) and Gel permeation chromatography (GPC). For further analysis a film of samples were prepared by casting on glass plate. The effects of amount of boric acid and degree of hydrolysis of PVA on performance properties like tensile strength, pencil hardness and thermal properties like glass transition temperature were studied. The results showed that by cross-linking there was an increase in mechanical strength and thermal property.
文摘以磺化腐植酸(SHA)、丙烯酸(AA)、聚乙烯醇(PVA)为原料,制备了SHA/AA/PVA有机保水剂。采用响应曲面法对SHA/AA/PVA的合成工艺进行优化,并研究了其表面形貌、吸水性能及保水应用性能。结果表明,0.5 g PVA、1 g SHA、5.08 g 70%中和度AA、0.06 g MBA、0.48 g KPS、反应温度75℃为SHA/AA/PVA有机保水剂的最优制备工艺,其吸水率为483.29 g/g。保水剂具有明显的网状结构,有利于水的进入和养分的保存。保水剂吸水12 h后趋近于饱和,且在吸收一定量水分后可以对干燥环境进行缓慢释放,从而保持沙土湿润,为植物生长提供所需水分。