The community’s resilience in the face of natural hazards relies heavily on the rapid and efficient restoration of electric power networks,which plays a critical role in emergency response,economic recovery,and the f...The community’s resilience in the face of natural hazards relies heavily on the rapid and efficient restoration of electric power networks,which plays a critical role in emergency response,economic recovery,and the func-tionality of essential lifeline and social infrastructure systems.Leveraging the recent data revolution,the digital twin(DT)concept emerges as a promising tool to enhance the effectiveness of post-disaster recovery efforts.This paper introduces a novel framework for post-hurricane electric power restoration using a hybrid DT approach that combines physics-based and data-driven models by utilizing a dynamic Bayesian network.By capturing the complexities of power system dynamics and incorporating the road network’s influence,the framework offers a comprehensive methodology to guide real-time power restoration efforts in post-disaster scenarios.A discrete event simulation is conducted to demonstrate the proposed framework’s efficacy.The study showcases how the electric power restoration DT can be monitored and updated in real-time,reflecting changing conditions and facilitating adaptive decision-making.Furthermore,it demonstrates the framework’s flexibility to allow decision-makers to prioritize essential,residential,and business facilities and compare different restoration plans and their potential effect on the community.展开更多
Jeremy Harmer的ESA理论中提出了英语教学中的三要素,且阐释了三要素下的三种课型模式。该文是在ESA理论的杂拼模式(patchwork sequence)的指导下,结合《高级英语》中的课文Face to Face with Hurricane Camille,在教学中进行了一次尝试...Jeremy Harmer的ESA理论中提出了英语教学中的三要素,且阐释了三要素下的三种课型模式。该文是在ESA理论的杂拼模式(patchwork sequence)的指导下,结合《高级英语》中的课文Face to Face with Hurricane Camille,在教学中进行了一次尝试,进一步发现了ESA在课堂教学中的积极作用。展开更多
The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind...The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Offthe shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated offthe shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s^-, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s^-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that ialf frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline. Offthe shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1.035fin the mixed layer to 1.02fin the thermocline, implying a trend for the shift in frequency of the oscillations towards f with the depth.展开更多
The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought ...The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought a severe catastrophe in New Orleans by combined effects of hurricane induced extreme sea environments and upper flood of the Mississippi River. Like the New Orleans City, Shanghai is located at the estuarine area of the Changjiang River and the combined effect of typhoon induced extreme sea en- vironments, flood peak runoff from the Changjiang River coupled with the spring tide is the dominate factor for disaster prevention design criteria. The Poisson-nested logistic trivariate compound extreme value distribution (PNLTCEYD) is a new type of joint probability model which is proposed by compounding a discrete distribution (typhoon occurring frequency) into a continuous multivariate joint distribution ( typhoon induced extreme events). The new model gives more reasonable predicted results for New Orleans and Shanghai disaster prevention design criteria.展开更多
The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are perfo...The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3℃, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1℃ change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.展开更多
In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are stud...In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.展开更多
Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temper...Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.展开更多
The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote...The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.展开更多
Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)sig...Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.展开更多
Numerical experiments were conducted using the finite volume community ocean model(FVCOM) to study the impact of the initial density stratification on simulated currents over the Louisiana shelf during Hurricane Katri...Numerical experiments were conducted using the finite volume community ocean model(FVCOM) to study the impact of the initial density stratification on simulated currents over the Louisiana shelf during Hurricane Katrina. Model results for two simulation scenarios, including an initially stratified shelf and an initially non-stratified shelf, were examined. Comparison of two simulations for two-dimensional(2D) currents,the time series of current speed, and variations of cross-shore currents across different sections showed that the smallest differences between simulated currents for these two scenarios occurred over highly mixed regions within 1 radius of maximum wind(RMW) under the hurricane.For areas farther from the mixed zone, differences increased, reaching the maximum values off Terrebonne Bay. These large discrepancies correspond to significant differences between calculated vertical eddy viscosities for the two scenarios. The differences were addressed based on the contradictory behavior of turbulence in a stratified fluid, as compared to a non-stratified fluid. Incorporation of this behavior in the MellorYamada turbulent closure model established a Richardson number-based stability function that was used for estimation of the vertical eddy viscosity from the turbulent energy and macroscale. The results of this study demonstrate the necessity for inclusion of shelf stratification when circulation modeling is conducted using three-dimensional(3D) baroclinic models. To achieve high-accuracy currents, the parameters associated with the turbulence closures should be calibrated with field measurements of currents at different depths.展开更多
Hurricanes Katrina and Rita resulted in the largest number of platforms destroyed and damaged in the history of Gulf of Mexico operations. With the trend of global warming, sea level rising and the frequency and inten...Hurricanes Katrina and Rita resulted in the largest number of platforms destroyed and damaged in the history of Gulf of Mexico operations. With the trend of global warming, sea level rising and the frequency and intensity of typhoon increase. How to determine a reasonable deck elevation against the largest hurricane waves has become a key issue in offshore platforms design and construction for the unification of economy and safety. In this paper, the multivariate compound extreme value distribution (MCEVD) model is used to predict the deck elevation with different combination of tide, surge height, and crest height. Compared with practice recommended by American Petroleum Institute (API), the prediction by MCEVD has probabilistic meaning and universality.展开更多
To examine the zonal asymmetry of the Antarctic oscillation (AAO), different portions of the AAO from June to October (JJASO) in the interannual variability of the Atlantic tropical hurricanes number (ATHN) are docume...To examine the zonal asymmetry of the Antarctic oscillation (AAO), different portions of the AAO from June to October (JJASO) in the interannual variability of the Atlantic tropical hurricanes number (ATHN) are documented in this research. It follows that the AAO in the Western Hemisphere (AAOWH) is positively correlated with the ATHN, at 0.36 during the period of 1871-1998 and 0.42 during the period of 1949-98. After removing the linear regressions on the Southern Oscillation Index (SOI) in all time series, the above correlation coefficients are 0.25 and 0.30, respectively. The underlying mechanisms are studied through analyses of the atmospheric general circulation variability associated with the AAOWH. It turns out that the positive (negative) phase of JJASO AAOWH corresponds with several factors: decreased (increased) vertical zonal wind shear magnitude, low-level anomalous convergence (divergence), high-level anomalous divergence (convergence), and warmed (cooled) sea surface temperature in the tropical Atlantic. Therefore, the positive (negative) phase of JJASO AAOWH is favorable (unfavorable) to the tropical hurricane genesis.展开更多
Hurricanes cause abrupt carbon reduction in forests, but silviculture treatment can be an effective means of quickly regenerating and restoring hurricane-damaged sites. This study assessed how silviculture treatments ...Hurricanes cause abrupt carbon reduction in forests, but silviculture treatment can be an effective means of quickly regenerating and restoring hurricane-damaged sites. This study assessed how silviculture treatments affect carbon balance after hurricane damage in central Hokkaido, Japan. We examined carbon storage in trees and underground vegetation as well as carbon emissions from silviculture operations in 25-year-old stands, where scarification and plantation occurred just after hurricane damage. The amount of carbon stored varied according to silviculture treatment. Among three scarification treatments, a scarified depth of 0 cm (understory vegetation removal) led to the largest amount of carbon stored (64.7 t·ha^-1 C). Among four plantation treatments, the largest amount of carbon was stored in a Larix hybrid (L. gmelinii var. japonica × L. kaempferi) plantation (80.3 t·ha^-1 C). The plantation of Abies sachalinensis was not successful at accumulating carbon (40.5·ha^-1 C). The amount of carbon emitted from silviculture operations was 0.05-0.14 t·ha^-1 C, and it marginally affected the net carbon balance of the silviculture project. Results indicate that silviculture treatments should beperformed in an appropriate way to effectively recover the ability of carbon sequestration in hurricane-damaged forests.展开更多
Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep...Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.展开更多
The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. Thi...The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. This paper shows that extra non-real-time data (dropsonde data) can improve hurricane track forecasts compared with real-time observational data, and that the wind and relative humidity components of the dropsonde data have the greatest impact on the track forecasts.展开更多
Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the so...Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.展开更多
This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-di...This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike's track, resulting in better forecasts.展开更多
The effects of hurricane forward speed(V)and approach angle(θ)on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before.Here we p...The effects of hurricane forward speed(V)and approach angle(θ)on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before.Here we present such a study with a numerical experiment using the Finite Volume Community Ocean Model(FVCOM).The hurricane track is simplified as a straight line,such that V andθfully define the motion of the hurricane.The maximum surge is contributed by both free waves and a forced storm surge wave moving with the hurricane.Among the free waves,Kelvin-type waves can only propagate in the down-coast direction.Simulations show that those waves can only have a significant positive storm surge when the hurricane velocity has a down-coast component.The optimal values of V andθthat maximize the storm surge in an idealized semi-circular ocean basin are functions of the bathymetry.For a constant bathymetry,the maximum surge occurs when the hurricane approaches the coast from the normal direction when the free wave generation is minimal;for a stepped bathymetry,the maximum surge occurs at a certain acute approach angle which maximizes the duration of persistent wind forcing;a step-like bathymetry with a sloped shelf is similar to the stepped bathymetry,with the added possibility of landfall resonance when the free and forced waves are moving at about the same velocity.For other cases,the storm surge is smaller,given other parameters(hurricane size,maximum wind speed,etc.)unchanged.展开更多
The second Advanced Technology Microwave Sounder(ATMS)was onboard the National Oceanic and Atmospheric Administration(NOAA)-20 satellite when launched on 18 November 2017.Using nearly six months of the earliest NOAA-2...The second Advanced Technology Microwave Sounder(ATMS)was onboard the National Oceanic and Atmospheric Administration(NOAA)-20 satellite when launched on 18 November 2017.Using nearly six months of the earliest NOAA-20 observations,the biases of the ATMS instrument were compared between NOAA-20 and the Suomi National Polar-Orbiting Partnership(S-NPP)satellite.The biases of ATMS channels 8 to 13 were estimated from the differences between antenna temperature observations and model simulations generated from Meteorological Operational(MetOp)-A and MetOp-B satellites’Global Positioning System(GPS)radio occultation(RO)temperature and water vapor profiles.It was found that the ATMS onboard the NOAA-20 satellite has generally larger cold biases in the brightness temperature measurements at channels 8 to 13 and small standard deviations.The observations from ATMS on both S-NPP and NOAA-20 are shown to demonstrate an ability to capture a less than 1-h temporal evolution of Hurricane Florence(2018)due to the fact that the S-NPP orbits closely follow those of NOAA-20.展开更多
Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(S...Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(SST).In this study,the contribution of TC track changes to the interannual variations of intense hurricane activity in the North Atlantic basin is evaluated through numerical experiments.It is found that that observed interannual variations of the frequency of intense hurricanes during the period 1958–2017 are dynamically consistent with changes in the large-scale ocean/atmosphere environment.Track changes can account for~50%of the interannual variability of intense hurricanes,while no significant difference is found for individual environmental parameters between active and inactive years.The only significant difference between active and inactive years is in the duration of TC intensification in the region east of 60°W.The duration increase is not due to the slow-down of TC translation.In active years,a southeastward shift of the formation location in the region east of 60°W causes TCs to take a westward prevailing track,which allows TCs to have a longer opportunity for intensification.On the other hand,most TCs in inactive years take a recurving track,leading to a shorter duration of intensification.This study suggests that the influence of track changes should be considered to understand the basin-wide intensity changes in the North Atlantic basin on the interannual time scale.展开更多
基金Financial support for this work was provided by the US National Science Foundation(NSF)under Award Number 2052930.
文摘The community’s resilience in the face of natural hazards relies heavily on the rapid and efficient restoration of electric power networks,which plays a critical role in emergency response,economic recovery,and the func-tionality of essential lifeline and social infrastructure systems.Leveraging the recent data revolution,the digital twin(DT)concept emerges as a promising tool to enhance the effectiveness of post-disaster recovery efforts.This paper introduces a novel framework for post-hurricane electric power restoration using a hybrid DT approach that combines physics-based and data-driven models by utilizing a dynamic Bayesian network.By capturing the complexities of power system dynamics and incorporating the road network’s influence,the framework offers a comprehensive methodology to guide real-time power restoration efforts in post-disaster scenarios.A discrete event simulation is conducted to demonstrate the proposed framework’s efficacy.The study showcases how the electric power restoration DT can be monitored and updated in real-time,reflecting changing conditions and facilitating adaptive decision-making.Furthermore,it demonstrates the framework’s flexibility to allow decision-makers to prioritize essential,residential,and business facilities and compare different restoration plans and their potential effect on the community.
文摘Jeremy Harmer的ESA理论中提出了英语教学中的三要素,且阐释了三要素下的三种课型模式。该文是在ESA理论的杂拼模式(patchwork sequence)的指导下,结合《高级英语》中的课文Face to Face with Hurricane Camille,在教学中进行了一次尝试,进一步发现了ESA在课堂教学中的积极作用。
文摘The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Offthe shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated offthe shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s^-, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s^-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that ialf frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline. Offthe shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1.035fin the mixed layer to 1.02fin the thermocline, implying a trend for the shift in frequency of the oscillations towards f with the depth.
基金supported by the National Natural Science Foundation of China under contract No.50379051.
文摘The accurate prediction of the typhoon (hurricane) induced extreme sea environments is very important for the coastal structure design in areas influenced by typhoon (hurricane). In 2005 Hurricane Katrina brought a severe catastrophe in New Orleans by combined effects of hurricane induced extreme sea environments and upper flood of the Mississippi River. Like the New Orleans City, Shanghai is located at the estuarine area of the Changjiang River and the combined effect of typhoon induced extreme sea en- vironments, flood peak runoff from the Changjiang River coupled with the spring tide is the dominate factor for disaster prevention design criteria. The Poisson-nested logistic trivariate compound extreme value distribution (PNLTCEYD) is a new type of joint probability model which is proposed by compounding a discrete distribution (typhoon occurring frequency) into a continuous multivariate joint distribution ( typhoon induced extreme events). The new model gives more reasonable predicted results for New Orleans and Shanghai disaster prevention design criteria.
文摘The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3℃, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1℃ change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.
文摘In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution, a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.
基金supported by the National Natural Science Foundation of China (Grant No. 41305089)the National Oceanic and Atmospheric Administration (Grant No. NA10NES4400013)the Public Industry-specific Fund for Meteorology (Grant No. GYHY201406011)
文摘Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data,especially over the oceans where conventional data are sparse.In this study,two types of AIRS-retrieved temperature and moisture profiles,the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product,were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011).The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis,especially between 200 hPa and 700 hPa.The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa,where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals.The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere.A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene.The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment.In terms of total precipitable water and rainfall forecasts,the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile,improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)
文摘The AMSR2 microwave radiometer is the main payload of the GCOM-W1 satellite,launched by the Japan Aerospace Exploration Agency in 2012. Based on the pre-launch information extraction algorithm,the AMSR2 enables remote monitoring of geophysical parameters such as sea surface temperature,wind speed,water vapor,and liquid cloud water content. However,rain alters the properties of atmospheric scattering and absorption,which contaminates the brightness temperatures measured by the microwave radiometer. Therefore,it is difficult to retrieve AMSR2-derived sea surface wind speeds under rainfall conditions. Based on microwave radiative transfer theory,and using AMSR2 L1 brightness temperature data obtained in August 2012 and NCEP reanalysis data,we studied the sensitivity of AMSR2 brightness temperatures to rain and wind speed,from which a channel combination of brightness temperature was established that is insensitive to rainfall,but sensitive to wind speed. Using brightness temperatures obtained with the proposed channel combination as input parameters,in conjunction with HRD wind field data,and adopting multiple linear regression and BP neural network methods,we established an algorithm for hurricane wind speed retrieval under rainfall conditions. The results showed that the standard deviation and relative error of retrievals,obtained using the multiple linear regression algorithm,were 3.1 m/s and 13%,respectively. However,the standard deviation and relative error of retrievals obtained using the BP neural network algorithm were better(2.1 m/s and 8%,respectively). Thus,the results of this paper preliminarily verified the feasibility of using microwave radiometers to extract sea surface wind speeds under rainfall conditions.
基金The National Natural Science Foundation of China under contract No.41371355the Director Fund Project of Institute of Remote Sensing and Digital Earth of CAS under contract No.Y6SJ0600CX
文摘Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.
基金supported by grants from Louisiana's Coastal Protection and Restoration Authority(CPRA)the Stennis Space Center,the Lake Pontchartrain Basin Foundation,the National Science Foundation(Grants No.OCE-0554674,DEB-0833225,OCE-1140268,and OCE-1140307)+2 种基金the Hypoxia Project of NOAA(Grant No.NA06NPS4780197)the Shanghai Universities First-Class Disciplines Projectthe Shanghai Ocean University International Center for Marine Studies
文摘Numerical experiments were conducted using the finite volume community ocean model(FVCOM) to study the impact of the initial density stratification on simulated currents over the Louisiana shelf during Hurricane Katrina. Model results for two simulation scenarios, including an initially stratified shelf and an initially non-stratified shelf, were examined. Comparison of two simulations for two-dimensional(2D) currents,the time series of current speed, and variations of cross-shore currents across different sections showed that the smallest differences between simulated currents for these two scenarios occurred over highly mixed regions within 1 radius of maximum wind(RMW) under the hurricane.For areas farther from the mixed zone, differences increased, reaching the maximum values off Terrebonne Bay. These large discrepancies correspond to significant differences between calculated vertical eddy viscosities for the two scenarios. The differences were addressed based on the contradictory behavior of turbulence in a stratified fluid, as compared to a non-stratified fluid. Incorporation of this behavior in the MellorYamada turbulent closure model established a Richardson number-based stability function that was used for estimation of the vertical eddy viscosity from the turbulent energy and macroscale. The results of this study demonstrate the necessity for inclusion of shelf stratification when circulation modeling is conducted using three-dimensional(3D) baroclinic models. To achieve high-accuracy currents, the parameters associated with the turbulence closures should be calibrated with field measurements of currents at different depths.
基金supported bythe National Natural Science Foundation of China (Grant No.51010009)
文摘Hurricanes Katrina and Rita resulted in the largest number of platforms destroyed and damaged in the history of Gulf of Mexico operations. With the trend of global warming, sea level rising and the frequency and intensity of typhoon increase. How to determine a reasonable deck elevation against the largest hurricane waves has become a key issue in offshore platforms design and construction for the unification of economy and safety. In this paper, the multivariate compound extreme value distribution (MCEVD) model is used to predict the deck elevation with different combination of tide, surge height, and crest height. Compared with practice recommended by American Petroleum Institute (API), the prediction by MCEVD has probabilistic meaning and universality.
基金supported by the National Natural Science Foundation of China, under Grant No. 40775049the Major State Basic Research Development Program of China (973 Program), under Grant No. 2009CB421406the IAP Key Innovation Programs IAP07117 and IAP09302
文摘To examine the zonal asymmetry of the Antarctic oscillation (AAO), different portions of the AAO from June to October (JJASO) in the interannual variability of the Atlantic tropical hurricanes number (ATHN) are documented in this research. It follows that the AAO in the Western Hemisphere (AAOWH) is positively correlated with the ATHN, at 0.36 during the period of 1871-1998 and 0.42 during the period of 1949-98. After removing the linear regressions on the Southern Oscillation Index (SOI) in all time series, the above correlation coefficients are 0.25 and 0.30, respectively. The underlying mechanisms are studied through analyses of the atmospheric general circulation variability associated with the AAOWH. It turns out that the positive (negative) phase of JJASO AAOWH corresponds with several factors: decreased (increased) vertical zonal wind shear magnitude, low-level anomalous convergence (divergence), high-level anomalous divergence (convergence), and warmed (cooled) sea surface temperature in the tropical Atlantic. Therefore, the positive (negative) phase of JJASO AAOWH is favorable (unfavorable) to the tropical hurricane genesis.
基金supported by the Alliance for Global Sustainability promotional office at the University of Tokyo
文摘Hurricanes cause abrupt carbon reduction in forests, but silviculture treatment can be an effective means of quickly regenerating and restoring hurricane-damaged sites. This study assessed how silviculture treatments affect carbon balance after hurricane damage in central Hokkaido, Japan. We examined carbon storage in trees and underground vegetation as well as carbon emissions from silviculture operations in 25-year-old stands, where scarification and plantation occurred just after hurricane damage. The amount of carbon stored varied according to silviculture treatment. Among three scarification treatments, a scarified depth of 0 cm (understory vegetation removal) led to the largest amount of carbon stored (64.7 t·ha^-1 C). Among four plantation treatments, the largest amount of carbon was stored in a Larix hybrid (L. gmelinii var. japonica × L. kaempferi) plantation (80.3 t·ha^-1 C). The plantation of Abies sachalinensis was not successful at accumulating carbon (40.5·ha^-1 C). The amount of carbon emitted from silviculture operations was 0.05-0.14 t·ha^-1 C, and it marginally affected the net carbon balance of the silviculture project. Results indicate that silviculture treatments should beperformed in an appropriate way to effectively recover the ability of carbon sequestration in hurricane-damaged forests.
基金The National Natural Science Foundation of China under contract No.50779015the National Key Technology R&D Program of China under contract No.2012BAB03B01
文摘Hurricane Juan provides an excellent opportunity to probe into the detailed wave spectral patterns and spectral parameters of a hurricane system, with enough wave spectral observations around Juan's track in the deep ocean and shallow coastal water. In this study, Hurricane Juan and wave observation stations around Juan's track are introduced. Variations of wave composition are discussed and analyzed based on time series of one-dimensional frequency spectra, as well as wave steepness around Juan's track: before, during, and after Juan's passing. Wave spectral involvement is studied based on the observed one-dimensional spectra and two-dimensional spectra during the hurricane. The standardization method of the observed wave spectra during Hurricane Juan is discussed, and the standardized spectra show relatively conservative behavior, in spite of the huge variation in wave spectral energy, spectral peak, and peak frequency during this hurricane. Spectral widths' variation during Hurricane Juan are calculated and analyzed. A two-layer nesting WW3 model simulation is applied to simulate the one-dimensional and two-dimensional wave spectra, in order to examine WW3's ability in simulating detailed wave structure during Hurricane Juan.
文摘The numerical product of hurricane tracks vastly depends on initial observation fields. However, the forecast error is very large because of lack of observational data, especially when hurricanes are over the sea. This paper shows that extra non-real-time data (dropsonde data) can improve hurricane track forecasts compared with real-time observational data, and that the wind and relative humidity components of the dropsonde data have the greatest impact on the track forecasts.
基金supported by the US National Science Foundation(Grant No.AGS-1243027)Computer support from the Center for High-Performance Computing at the University of Utah is appreciatedhigh-performance computing support from Yellowstone(ark:/85065/d7wd3xhc),provided by NCAR’s Computational and Information Systems Laboratory and sponsored by the National Science Foundation,is also acknowledged
文摘Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.
基金funded by the Air Dat projectThe National Center for Atmospheric Research is sponsored by the National Science Foundation
文摘This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike's track, resulting in better forecasts.
基金The National Key R&D Project under contract No.2017YFC1404201
文摘The effects of hurricane forward speed(V)and approach angle(θ)on storm surge are important and a systematic investigation covering possible and continuous ranges of these parameters has not been done before.Here we present such a study with a numerical experiment using the Finite Volume Community Ocean Model(FVCOM).The hurricane track is simplified as a straight line,such that V andθfully define the motion of the hurricane.The maximum surge is contributed by both free waves and a forced storm surge wave moving with the hurricane.Among the free waves,Kelvin-type waves can only propagate in the down-coast direction.Simulations show that those waves can only have a significant positive storm surge when the hurricane velocity has a down-coast component.The optimal values of V andθthat maximize the storm surge in an idealized semi-circular ocean basin are functions of the bathymetry.For a constant bathymetry,the maximum surge occurs when the hurricane approaches the coast from the normal direction when the free wave generation is minimal;for a stepped bathymetry,the maximum surge occurs at a certain acute approach angle which maximizes the duration of persistent wind forcing;a step-like bathymetry with a sloped shelf is similar to the stepped bathymetry,with the added possibility of landfall resonance when the free and forced waves are moving at about the same velocity.For other cases,the storm surge is smaller,given other parameters(hurricane size,maximum wind speed,etc.)unchanged.
文摘The second Advanced Technology Microwave Sounder(ATMS)was onboard the National Oceanic and Atmospheric Administration(NOAA)-20 satellite when launched on 18 November 2017.Using nearly six months of the earliest NOAA-20 observations,the biases of the ATMS instrument were compared between NOAA-20 and the Suomi National Polar-Orbiting Partnership(S-NPP)satellite.The biases of ATMS channels 8 to 13 were estimated from the differences between antenna temperature observations and model simulations generated from Meteorological Operational(MetOp)-A and MetOp-B satellites’Global Positioning System(GPS)radio occultation(RO)temperature and water vapor profiles.It was found that the ATMS onboard the NOAA-20 satellite has generally larger cold biases in the brightness temperature measurements at channels 8 to 13 and small standard deviations.The observations from ATMS on both S-NPP and NOAA-20 are shown to demonstrate an ability to capture a less than 1-h temporal evolution of Hurricane Florence(2018)due to the fact that the S-NPP orbits closely follow those of NOAA-20.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41730961,41675051,and 41922033)。
文摘Previous studies have linked interannual variability of tropical cyclone(TC)intensity in the North Atlantic basin(NA)to Sahelian rainfall,vertical shear of the environmental flow,and relative sea surface temperature(SST).In this study,the contribution of TC track changes to the interannual variations of intense hurricane activity in the North Atlantic basin is evaluated through numerical experiments.It is found that that observed interannual variations of the frequency of intense hurricanes during the period 1958–2017 are dynamically consistent with changes in the large-scale ocean/atmosphere environment.Track changes can account for~50%of the interannual variability of intense hurricanes,while no significant difference is found for individual environmental parameters between active and inactive years.The only significant difference between active and inactive years is in the duration of TC intensification in the region east of 60°W.The duration increase is not due to the slow-down of TC translation.In active years,a southeastward shift of the formation location in the region east of 60°W causes TCs to take a westward prevailing track,which allows TCs to have a longer opportunity for intensification.On the other hand,most TCs in inactive years take a recurving track,leading to a shorter duration of intensification.This study suggests that the influence of track changes should be considered to understand the basin-wide intensity changes in the North Atlantic basin on the interannual time scale.