期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Progress and Prospect of Geophysical Research on Underground Gas Storage: A Case Study of Hutubi Gas Storage,Xinjiang,China
1
作者 ZHANG Bo SONG Lili +2 位作者 JI Zhanbo WANG Baoshan WU Zhide 《Earthquake Research in China》 CSCD 2020年第2期187-209,共23页
Hutubi Underground Gas Storage(UGS) is an important part of China’s West-East Gas Pipeline Project. Its production safety also plays an essential role in ensuring peaking,emergency and reserve of natural gas in the r... Hutubi Underground Gas Storage(UGS) is an important part of China’s West-East Gas Pipeline Project. Its production safety also plays an essential role in ensuring peaking,emergency and reserve of natural gas in the region. Geophysical observations and research conducted on Hutubi UGS provide significant support for understanding the operation status and ensuring safe operation of the UGS. Since the beginning of the construction of Hutubi UGS and its production,several works including gas field observation experiments,rock experiments and numerical simulations have been conducted. Preliminary observational results show that during the initial operation stage of the UGS,the "breathing phenomenon"in caprock and microseismicity in the vicinity are closely related to the operation of the gas storage. However,rock experiments and numerical simulations show that these activities may gradually weaken with the multi-cycle operation of gas storage. The impact of the operation of Hutubi UGS in the surrounding areas is gradually weakening,and its operation tends to be stable. Implementing long-term and multi-method geophysical observations is able to provide us a better understanding of the relationship between the operation of UGS and regional geological hazards. On this basis,the corresponding geomechanical model can be established to form an effective risk management mechanism for gas storage operation. Thus,it is of great significance to understand its operation status,monitor storage conditions,guide production and operation,and ultimately guarantee the safe production of the gas storage. 展开更多
关键词 hutubi Underground gas storage Deformation SEISMICITY Rock experiment
下载PDF
Microscopic experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs
2
作者 JIANG Tongwen QI Huan +4 位作者 WANG Zhengmao LI Yiqiang WANG Jinfang LIU Zheyu CAO Jinxin 《Petroleum Exploration and Development》 SCIE 2024年第1期203-212,共10页
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic... Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee. 展开更多
关键词 water-invaded gas-reservoir underground gas storage cyclical injection-production gas-water contact gas storage and production rate UGS capacity expansion control method
下载PDF
Physical characteristics of high concentrated gas hydrate reservoir in the Shenhu production test area,South China Sea
3
作者 Jiapeng JIN Xiujuan WANG +7 位作者 Zhenyu ZHU Pibo SU Lixia LI Qingping LI Yiqun GUO Jin QIAN Zhendong LUAN Jilin ZHOU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期694-709,共16页
High concentrated and heterogeneous distribution of gas hydrates have been identified in the gas hydrate production test region in the Shenhu area,South China Sea.The gas hydrate-bearing sediments with high saturation... High concentrated and heterogeneous distribution of gas hydrates have been identified in the gas hydrate production test region in the Shenhu area,South China Sea.The gas hydrate-bearing sediments with high saturation locate at two ridges of submarine canyon with different thickness and saturations just above the bottom simulating reflection.The crossplots of gamma ray,acoustic impedance(P-impedance)and porosity at four sites show that the sediments can be divided into the upper and lower layers at different depths,indicating different geotechnical reservoir properties.Therefore,the depositional environments and physical properties at two ridges are analyzed and compared to show the different characteristics of hydrate reservoir.High porosity,high P-wave velocity,and coarse grain size indicate better reservoir quality and higher energy depositional environment for gas hydrate at Sites W18 and W19 than those at Sites W11 and W17.Our interpretation is that the base of canyon deposits at Sites W18 and W19 characterized by upward-coarsening units may be turbidity sand layers,thus significantly improving the reservoir quality with increasing gas hydrate saturation.The shelf and slope sliding deposits compose of the fine-grained sediments at Sites W11 and W17.The gas hydrate production test sites were conducted at the ridge of W11 and W17,mainly because of the thicker and larger area of gas hydrate-bearing reservoirs than those at Sites W18 and W19.All the results provide useful insights for assessing reservoir quality in the Shenhu area. 展开更多
关键词 reservoir properties gas hydrate production test region depositional environment South China Sea
下载PDF
Application of the monitoring and early warning system for internal solitary waves:Take the second natural gas hydrates production test in the South China Sea as an example
4
作者 Dan-yi Su Bin-bin Guo +5 位作者 Qian-yong Liang Chu-jin Liang Fei-long Lin Su-meng Jiang Yi-fei Dong Xue-min Wu 《China Geology》 CAS CSCD 2023年第4期676-684,共9页
Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ... Internal solitary waves(ISWs) contain great energy and have the characteristics of emergency and concealment. To avoid their damage to offshore engineering, a new generation of monitoring and early warning system for ISWs was developed using technologies of double buoys monitoring, intelligent realtime data transmission, and automatic software identification. The system was applied to the second natural gas hydrates(NGHs) production test in the Shenhu Area, South China Sea(SCS) and successfully provided the early warning of ISWs for 173 days(from October 2019 to April 2020). The abrupt changes in the thrust force of the drilling platform under the attack of ISWs were consistent with the early warning information, proving the reliability of this system. A total of 93 ISWs were detected around the drilling platform. Most of them occurred during the spring tides in October–December 2019 and April 2020, while few of them occurred in winter. As suggested by the theoretical model, the full-depth structure of ISWs was a typical current profile of mode-1, and the velocities of wave-induced currents can reach 80 cm/s and30 cm/s, respectively, in the upper ocean and near the seabed. The ISWs may be primarily generated from the interactions between the topography and semidiurnal tides in the Luzon Strait, and then propagate westward to the drilling platform. This study could serve as an important reference for the early warning of ISWs for offshore engineering construction in the future. 展开更多
关键词 Internal solitary wave Early warning Offshore engineering Drilling platform Natural gas hydrates production test Shenhu Area South China Sea
下载PDF
“Extreme utilization” theory and practice in gas storages with complex geological conditions 被引量:1
5
作者 MA Xinhua ZHENG Dewen +1 位作者 DING Guosheng WANG Jieming 《Petroleum Exploration and Development》 SCIE 2023年第2期419-432,共14页
Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of ... Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of gas-water flowing law of multi-cycle relative permeability hysteresis and differential utilization in zones, the extreme utilization theory targeting at the maximum amount of stored gas, maximum injection-production capacity and maximum efficiency in space utilization is proposed to support the three-in-one evaluation method of the maximum pressure-bearing capacity of geological body, maximum well production capacity and maximum peak shaving capacity of storage space. This study realizes the full potential of gas storage(storage capacity) at maximum pressure, maximum formation-wellbore coordinate production, optimum well spacing density match with finite-time unsteady flow, and peaking shaving capacity at minimum pressure, achieving perfect balance between security and capacity. Operation in gas storages, such as Hutubi in Xinjiang, Xiangguosi in Xinan, and Shuang6 in Liaohe, proves that extreme utilization theory has promoted high quality development of gas storages in China. 展开更多
关键词 underground gas storage gas-storage geological body maximum pressure-bearing maximum well production capacity maximum peak shaving capacity extreme utilization theory multi-cycle relative permeability hysteresis
下载PDF
The first offshore natural gas hydrate production test in South China Sea 被引量:123
6
作者 Jin-fa Li Jian-liang Ye +13 位作者 Xu-wen Qin Hai-jun Qiu Neng-you Wu Hai-long Lu Wen-wei Xie Jing-an Lu Fei Peng Zhen-qiang Xu Cheng Lu Zeng-gui Kuang Jian-gong Wei Qian-yong Liang Hong-feng Lu Bei-bei Kou 《China Geology》 2018年第1期5-16,共12页
Natural gas hydrates (NGH)is one of key future clean energy resources.Its industrialized development will help remit the huge demand of global natural gas,relieve the increasing pressure of the environment, and play a... Natural gas hydrates (NGH)is one of key future clean energy resources.Its industrialized development will help remit the huge demand of global natural gas,relieve the increasing pressure of the environment, and play a vital role in the green sustainable growth of human societies.Based on nearly two decades' studying on the reservoir characteristics in the South China Sea (SCS)and the knowledge of reservoir system,the China Geological Survey (CGS)conducted the first production test on an optimal target selected in Shenhu area SCS in 2017.Guided by the "three-phase control"exploitation theory which focused on formation stabilization,technologies such as formation fluid extraction,well drilling and completing, reservoir stimulating,sand controlling,environmental monitoring,monitoring and preventing of secondary formation of hydrates were applied.The test lasted for 60 days from May 10^th when starting to pump, drop pressure and ignite to well killing on July 9^th,with gas production of 3.09×10^5 m^3 in total,which is a world record with the longest continuous duration of gas production and maximal gas yield.This successful test brings a significant breakthrough on safety control of NGH production. 展开更多
关键词 Natural gas HYDRATE (NGH) production test Shenhu area SOUTH Chma SEA (SCS)
下载PDF
Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea 被引量:19
7
作者 Jian-liang Ye Xu-wen Qin +8 位作者 Hai-jun Qiu Qian-yong Liang Yi-fei Dong Jian-gong Wei Hai-long Lu Jing-an Lu Yao-hong Shi Chao Zhong Zhen Xia 《China Geology》 2018年第2期202-209,共8页
Natural gas hydrate (NGH)is considered as one of the new clean energy sources of the 21st century with the highest potential.The environmental issues of NGH production have attracted the close attention of scientists ... Natural gas hydrate (NGH)is considered as one of the new clean energy sources of the 21st century with the highest potential.The environmental issues of NGH production have attracted the close attention of scientists in various countries.From May 10 to July 9,2017,the first offshore NGH production test in the South China Sea (SCS)was conducted by the China Geological Survey.In addition,environmental security has also been effectively guaranteed via a comprehensive environmental monitoring system built during the NGH production test.The monitoring system considered sea-surface atmosphere methane and carbon dioxide concentrations,dissolved methane in the sea water column,and the seafloor physical oceanography and marine chemistry environment.The whole process was monitored via multiple means, in multiple layers,in all domains,and in real time.After the production test,an environmental investigation was promptly conducted to evaluate the environmental impact of the NGH production test. The monitoring results showed that the dissolved methane concentration in seawater and the near-seabed environment characteristics after the test were consistent with the background values,indicating that the NGH production test did not cause environmental problems such as methane leakage. 展开更多
关键词 SOUTH China Sea Natural gas HYDRATE production test METHANE LEAKAGE Environmental momtoring
下载PDF
Distribution of gas hydrate reservoir in the first production test region of the Shenhu area,South China Sea 被引量:16
8
作者 Ru-wei Zhang Jing-an Lu +5 位作者 Pen-fei Wen Zeng-gui Kuang Bao-jin Zhang Hua Xue Yun-xia Xu Xi Chen 《China Geology》 2018年第4期493-504,共12页
In May and July of 2017,China Geological Survey (CGS),and Guangzhou Marine Geological Survey (GMGS)carried out a production test of gas hydrate in the Shenhu area of the South China Sea and acquired a breakthrough of ... In May and July of 2017,China Geological Survey (CGS),and Guangzhou Marine Geological Survey (GMGS)carried out a production test of gas hydrate in the Shenhu area of the South China Sea and acquired a breakthrough of two months continuous gas production and nearly 3.1×10^5 m^3 of production. The gas hydrate reservoir in the Shenhu area of China,is mainly composed of fine-grained clay silt with low permeability,and very difficult for exploitation,which is very different from those discovered in the USA,and Canada (both are conglomerate),Japan (generally, coarse sand)and India (fracture-filled gas hydrate).Based on 3D seismic data preserved-amplitude processing and fine imaging,combined with logging-while-drilling (LWD)and core analysis data,this paper discusses the identification and reservoir characterization of gas hydrate orebodies in the Shenhu production test area.We also describe the distribution characteristics of the gas hydrate deposits and provided reliable data support for the optimization of the production well location.Through BSR feature recognition,seismic attribute analysis, model based seismic inversion and gas hydrate reservoir characterization,this paper describes two relatively independent gas hydrate orebodies in the Shenhu area,which are distributed in the north-south strip and tend to be thicker in the middle and thinner at the edge.The effective thickness of one orebody is bigger but the distribution area is relatively small.The model calculation results show that the distribution area of the gas hydrate orebody controlled by W 18/W 19 is about 11.24 km^2,with an average thickness of 19 m and a maximum thickness of 39 m,and the distribution area of the gas hydrate orebody controlled by W11/W17 is about 6.42 km^2,with an average thickness of 26 m and a maximum thickness of 90 m. 展开更多
关键词 Shenhu area gas HYDRATE production test RESERVOIR distnbution
下载PDF
The second natural gas hydrate production test in the South China Sea 被引量:24
9
作者 Jian-liang Ye Xu-wen Qin +24 位作者 Wen-wei Xie Hai-long Lu Bao-jin Ma Hai-jun Qiu Jin-qiang Liang Jing-an Lu Zeng-gui Kuang Cheng Lu Qian-yong Liang Shi-peng Wei Yan-jiang Yu Chunsheng Liu Bin Li Kai-xiang Shen Hao-xian Shi Qiu-ping Lu Jing Li Bei-bei Kou Gang Song Bo Li He-en Zhang Hong-feng Lu Chao Ma Yi-fei Dong Hang Bian 《China Geology》 2020年第2期197-209,共13页
Clayey silt reservoirs bearing natural gas hydrates(NGH)are considered to be the hydrate-bearing reservoirs that boast the highest reserves but tend to be the most difficult to exploit.They are proved to be exploitabl... Clayey silt reservoirs bearing natural gas hydrates(NGH)are considered to be the hydrate-bearing reservoirs that boast the highest reserves but tend to be the most difficult to exploit.They are proved to be exploitable by the first NGH production test conducted in the South China Sea in 2017.Based on the understanding of the first production test,the China Geological Survey determined the optimal target NGH reservoirs for production test and conducted a detailed assessment,numerical and experimental simulation,and onshore testing of the reservoirs.After that,it conducted the second offshore NGH production test in 1225 m deep Shenhu Area,South China Sea(also referred to as the second production test)from October 2019 to April 2020.During the second production test,a series of technical challenges of drilling horizontal wells in shallow soft strata in deep sea were met,including wellhead stability,directional drilling of a horizontal well,reservoir stimulation and sand control,and accurate depressurization.As a result,30 days of continuous gas production was achieved,with a cumulative gas production of 86.14×104 m3.Thus,the average daily gas production is 2.87×10^4 m^3,which is 5.57 times as much as that obtained in the first production test.Therefore,both the cumulative gas production and the daily gas production were highly improved compared to the first production test.As indicated by the monitoring results of the second production test,there was no anomaly in methane content in the seafloor,seawater,and atmosphere throughout the whole production test.This successful production test further indicates that safe and effective NGH exploitation is feasible in clayey silt NGH reservoirs.The industrialization of hydrates consists of five stages in general,namely theoretical research and simulation experiments,exploratory production test,experimental production test,productive production test,and commercial production.The second production test serves as an important step from the exploratory production test to experimental production test. 展开更多
关键词 Natural gas hydrates Second production test Horizontal well Reservoir stimulation Environmental impact NGH exploration trial engineering South China Sea
下载PDF
Stability analysis of submarine slopes in the area of the test production of gas hydrate in the South China Sea 被引量:8
10
作者 Yao-hong Shi Qian-yong Liang +3 位作者 Jiang-pin Yang Qing-meng Yuan Xue-min Wu Liang Kong 《China Geology》 2019年第3期276-286,共11页
In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test pr... In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production. 展开更多
关键词 gas HYDRATE test production Strength reduction finite element method SUBMARINE slope Stability gas HYDRATE exploration engineering South China Sea China
下载PDF
Application of wellhead suction anchor technology in the second production test of natural gas hydrates in the South China Sea 被引量:2
11
作者 Bo Li Bei-bei Kou +7 位作者 Bin Li Jing Li Jing Zeng Qing-lei Niu Yu-tao Shao Ke-wei Zhang Hao-yu Yu Ying-sheng Wang 《China Geology》 2022年第2期293-299,共7页
Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power.It is characterized by providing sufficient lateral and v... Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power.It is characterized by providing sufficient lateral and vertical bearing capacities and lateral bending moment.The anchor structure of a traditional suction anchor structure is improved with wellhead suction anchor technology,where a central pipe is added as a channel for drilling and completion operations.To solve the technical problems of a low wellhead bearing capacity,shallow built-up depth,and limited application of conductor jetting in the second production test of natural gas hydrates(NGHs)in the South China Sea(SCS),the China Geological Survey(CGS)took the lead in independently designing and manufacturing a wellhead suction anchor,which fulfilled the requirements of the production test.This novel anchor was successfully implemented in the second production test for the first time,providing a stable wellhead foundation for the success of the second production test of NGHs in the SCS. 展开更多
关键词 Wellhead suction anchor Conductor jetting Marine NGHs production test NGHs exploration trial engineering Oil and gas exploration engineering South China Sea
下载PDF
Stress sensitivity of formation during multi-cycle gas injection and production in an underground gas storage rebuilt from gas reservoirs 被引量:1
12
作者 LI Jiqiang ZHAO Guanqun +5 位作者 QI Zhilin YIN Bingyi XU Xun FANG Feifei YANG Shenyao QI Guixue 《Petroleum Exploration and Development》 CSCD 2021年第4期968-977,共10页
Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of... Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles. 展开更多
关键词 gas storage rebuilt from gas reservoirs multi-cycle injection and production reservoir stress sensitivity injection and production capacity gas storage layer selection
下载PDF
Simulation of pore space production law and capacity expansion mechanism of underground gas storage
13
作者 LIU Tao LI Yiqiang +7 位作者 DING Guosheng WANG Zhengmao SHI Lei LIU Zheyu TANG Xiang CAO Han CAO Jinxin HUANG Youqing 《Petroleum Exploration and Development》 CSCD 2022年第6期1423-1429,共7页
One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carrie... One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carried out using one-dimensional long core and large two-dimensional flat physical models to find out the effects of reservoir physical properties and injection-production balance time on reservoir pore utilization efficiency,effective reservoir capacity formation and capacity-reaching cycle.The results show that reservoir physical properties and formation water saturation are the main factors affecting the construction and operation of gas-reservoir type underground gas storage.During the construction and operation of gas-reservoir type gas storage,the reservoir space can be divided into three types of working zones:high efficiency,low efficiency and ineffective ones.The higher the reservoir permeability,the higher the pore utilization efficiency is,the smaller the ineffective working zone is,or there is no ineffective working zone;the smaller the loss of injected gas is,and the higher the utilization rate of pores is.The better the reservoir physical properties,the larger the reservoir space and the larger the final gas storage capacity is.The higher the water saturation of the reservoir,the more the gas loss during gas storage capacity building and operation is.Optimizing injection-production regime to discharge water and reduce water saturation is an effective way to reduce gas loss in gas storage.In the process of multiple cycles of injection and production,there is a reasonable injection-production balance time,further extending the injection-production balance period after reaching the reasonable time has little contribution to the expansion of gas storage capacity. 展开更多
关键词 gas reservoir-type underground gas storage multi-cycle injection and production injection-production equilibrium time pore utilization efficiency effective gas storage volume
下载PDF
An analysis method of injection and production dynamic transient flow in a gas field storage facility
14
作者 WANG Jieming LI Chun +4 位作者 SUN Junchang TANG Ligen ZHONG Rong LIU Xianshan ZHENG Shaojing 《Petroleum Exploration and Development》 CSCD 2022年第1期179-190,共12页
A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing metho... A dynamic transient flow analysis method considering complex factors such as the cyclic injection and production history in a gas field storage facility was established in view of the limitations of the existing methods for transient flow analysis and the characteristics of the injection-production operation of strongly heterogeneous gas reservoirs, and the corresponding theoretical charts were drawn. In addition, an injection-production dynamic transient flow analysis model named "three points and two stages" suitable for an underground gas storage(UGS) well with alternate working conditions was proposed. The "three points" refer to three time points during cyclic injection and production, namely, the starting point of gas injection for UGS construction, the beginning and ending points of the injection-production analysis stage;and the "two stages" refer to historical flow stage and injection-production analysis stage. The study shows that the dimensionless pseudo-pressure and dimensionless pseudo-pressure integral curves of UGS well flex downward in the early stage of the injection and production process, and the dimensionless pseudo-pressure integral derivative curve is convex during the gas production period and concave during the gas injection period, and the curves under different flow histories have atypical features. The new method present in this paper can analyze transient flow of UGS accurately. The application of this method to typical wells in Hutubi gas storage shows that the new method can fit the pressure history accurately, and obtain reliable parameters and results. 展开更多
关键词 gas field storage facility injection and production performance alternate working conditions transient flow analysis theoretical chart
下载PDF
Experimental study of water curtain performance for gas storage in an underground cavern 被引量:13
15
作者 Zhongkui Li Kezhong Wang +1 位作者 Anmin Wang Hui Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期89-96,共8页
An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the tim... An artificial water curtain system is composed of a network of underground galleries and horizontal boreholes drilled from these galleries.Pre-grouting measures are introduced to keep the bedrock saturated all the time.This system is deployed over an artificial or natural underground cavern used for the storage of gas(or some other fluids) to prevent the gas from escaping through leakage paths in the rock mass.An experimental physical modeling system has been constructed to evaluate the performance of artificial water curtain systems under various conditions.These conditions include different spacings of caverns and cavern radii located below the natural groundwater level.The principles of the experiment,devices,design of the physical model,calculation of gas leakage,and evaluation of the critical gas pressure are presented in this paper.Experimental result shows that gas leakage is strongly affected by the spacing of water curtain boreholes,the critical gas pressure,and the number and proximity of storage caverns.The hydraulic connection between boreholes is observed to vary with depth or location,which suggests that the distribution of water-conducting joint sets along the boreholes is also variable.When designing the drainage system for a cavern,drainage holes should be orientated to maximize the frequency at which they encounter major joint sets and permeable intervals studying in order to maintain the seal on the cavern through water pressure.Our experimental results provide a significant contribution to the theoretical controls on water curtains,and they can be used to guide the design and construction of practical storage caverns. 展开更多
关键词 artificial water curtain model test storage cavern gas pressure
下载PDF
Determination of the maximum allowable gas pressure for an underground gas storage salt cavern——A case study of Jintan,China 被引量:4
16
作者 Tongtao Wang Jianjun Li +3 位作者 Gang Jing Qingqing Zhang Chunhe Yang J.J.K.Daemen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期251-262,共12页
Increasing the allowable gas pressure of underground gas storage(UGS) is one of the most effective methods to increase its working gas capacity. In this context, hydraulic fracturing tests are implemented on the targe... Increasing the allowable gas pressure of underground gas storage(UGS) is one of the most effective methods to increase its working gas capacity. In this context, hydraulic fracturing tests are implemented on the target formation for the UGS construction of Jintan salt caverns, China, in order to obtain the minimum principal in situ stress and the fracture breakdown pressure. Based on the test results, the maximum allowable gas pressure of the Jintan UGS salt cavern is calibrated. To determine the maximum allowable gas pressure, KING-1 and KING-2 caverns are used as examples. A three-dimensional(3D)geomechanical model is established based on the sonar data of the two caverns with respect to the features of the target formation. New criteria for evaluating gas penetration failure and gas seepage are proposed. Results show that the maximum allowable gas pressure of the Jintan UGS salt cavern can be increased from 17 MPa to 18 MPa(i.e. a gradient of about 18 k Pa/m at the casing shoe depth). Based on numerical results, a field test with increasing maximum gas pressure to 18 MPa has been carried out in KING-1 cavern. Microseismic monitoring has been conducted during the test to evaluate the safety of the rock mass around the cavern. Field monitoring data show that KING-1 cavern is safe globally when the maximum gas pressure is increased from 17 MPa to 18 MPa. This shows that the geomechanical model and criteria proposed in this context for evaluating the maximum allowable gas pressure are reliable. 展开更多
关键词 Underground gas storage(UGS)salt CAVERN In SITU stress testing MAXIMUM gas pressure gas PENETRATION failure Microseismic monitoring
下载PDF
Forecast of natural gas supply and demand in China under the background of “Dual Carbon Targets”
17
作者 JIA Ailin CHENG Gang +1 位作者 CHEN Weiyan LI Yilong 《Petroleum Exploration and Development》 SCIE 2023年第2期492-504,共13页
As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternative... As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry. 展开更多
关键词 carbon peak and carbon neutrality energy mix carbon emissions natural gas consumption natural gas produc-tion new energy system terminal consumption scale production supply storage and marketing
下载PDF
Deployment and Exploration of a Gas Storage Well Pattern Based on the Threshold Radius 被引量:1
18
作者 TANG Ligen ZHU Weiyao +11 位作者 ZHU Huayin SUN Chunhui YANG Fenglai WANG Yan Li Xiaorui Li Haiming CHU Guangzhen WANG Jieming KONG Debin YUE Ming LIU Yuwei HUANG Kun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第2期630-637,共8页
To tackle the problem that wells that are deployed in a specific pattern based on the requirements of gas reservoir development are not suitable for gas storage,we have conducted concentrically circular injection and ... To tackle the problem that wells that are deployed in a specific pattern based on the requirements of gas reservoir development are not suitable for gas storage,we have conducted concentrically circular injection and production simulation experiments for gas storage,discovered the existence of a threshold radius,denoted by Rt,and derived the expression for Rt.Based on the analysis and discussion results,we propose a strategy for deploying gas storage wells in specific patterns.The expression for Rt shows that it is affected by factors such as the gas storage gas production/injection time,the upper pressure limit,the lower pressure limit,the bottomhole flow pressure at the ends of injection and production,the and permeability.The analysis and discussion results show that the Rt of a gas storage facility is much smaller than the Rt for gas reservoir development.In the gas storage facilities in China,the Rt for gas production is less than the Rt for the gas injection,and Rt increases with the difference in the operating pressure and with permeability K.Based on the characteristics of Rt,we propose three suggestions for gas storage well pattern deployment:(1)calculate Rt according to the designed functions of the gas storage facility and deploy the well pattern according to Rt;(2)deploy sparser,large-wellbore patterns in high-permeability areas and denser,small-wellbore patterns in high-permeability areas;and(3)achieve the gas injection well pattern by new drilling,and the gas production well pattern through a combination of the gas injection well pattern and old wells.By assessing a gas storage facility with a perfect well pattern after a number of adjustments,we found that the Rt of the 12 wells calculated in this paper is basically close to the corresponding actual radius,which validates our method.The results of this study provide a methodological basis for well pattern deployment in new gas storage construction. 展开更多
关键词 gas storage well deployment strategy gas injection well pattern gas production well pattern threshold radius
下载PDF
Productivity Testing Design Method of Multi-Factor Control for Unconsolidated Sandstone Gas Reservoir
19
作者 Muwang Wu Hao Liang +2 位作者 Mingjie Zhang Dianqiang Sun Peng Zhong 《Engineering(科研)》 2016年第11期815-822,共8页
Reservoir safety, testing-string safety, and flow control are key factors that should be considered in deep-water unconsolidated sandstone gas well testing work system. Combined with the feature of testing reservoir, ... Reservoir safety, testing-string safety, and flow control are key factors that should be considered in deep-water unconsolidated sandstone gas well testing work system. Combined with the feature of testing reservoir, pipe string type and sea area, the required minimum testing flow rate during cleaning up process, as well as minimum test flow rate without hydrate generation, pipe string erosion critical production, the maximum testing flow rate without destroying sand formation and the minimum output of meeting the demand of development was analyzed;based on the above critical test flow rates, testing working system is designed. Field application showed that the designed work system effectively provided good guidance for field test operations;no sand production or hydrate generation happened during the test process;the test parameter evaluated the reservoir accurately;the safe and efficient test operation was achieved. 展开更多
关键词 Multi-Factor Control Productivity testing Unconsolidated Sandstone gas Well HYDRATE SANDING
下载PDF
Nuclear magnetic resonance study of the formation and dissociation process of nature gas hydrate in sandstone
20
作者 Dong-hui Xing Xu-wen Qin +5 位作者 Hai-jun Qiu Hong-feng Lu Yi-ren Fan Xin-min Ge Cheng Lu Jin-wen Du 《China Geology》 CAS 2022年第4期630-636,共7页
In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.... In this work,the authors monitored the formation and dissociation process of methane hydrate in four different rock core samples through nuclear magnetic resonance(NMR)relaxation time(T_(2))and 2D imaging measurement.The result shows that the intensity of T_(2) spectra and magnetic resonance imaging(MRI)signals gradually decreases in the hydrate formation process,and at the same time,the T_(2) spectra move toward the left domain as the growth of hydrate in the pores of the sample accelerates the decay rate.The hydrate grows and dissociates preferentially in the purer sandstone samples with larger pore size and higher porosity.Significantly,for the sample with lower porosity and higher argillaceous content,the intensity of the T_(2) spectra also shows a trend of a great decrease in the hydrate formation process,which means that high-saturation gas hydrate can also be formed in the sample with higher argillaceous content.The changes in MRI of the sample in the process show that the formation and dissociation of methane hydrate can reshape the distribution of water in the pores. 展开更多
关键词 Nature gas hydrates(NGHs) Methane hydrate Nuclear magnetic resonance(NMR) Magnetic resonance imaging(MRI) Formation and dissociation Saturation Berea sandstone Marine hydrates production test Oil and gas exploration engineering
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部