AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administ...AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administration of D-galactosamine. The animals were divided into: the HBAL treatment group (n = 8), in which the canines received a 3-h treatment of HBAL; the bioartificial liver (BAL) treatment group (n = 8), in which the canines received a 3-h treatment of BAL; the non-bioartificial liver (NBAL) treatment group (n = 8), in which the canines received a 3-h treatment of NBAL; the control group (n = 8), in which the canines received no additional treatment. Biochemical parameters and survival time were determined. Levels of xenoantibodies, RNA of porcine endogenous retrovirus (PERV) and reverse transcriptase (RT) activity in the plasma were detected. RESULTS: Biochemical parameters were significantly decreased in all treatment groups. The TBIL level in the HBAL group was lower than that in other groups (2.19 ± 0.55 mmol/L vs 24.2 ± 6.45 mmol/L, 12.47 ± 3.62 mmol/L, 3.77 ± 1.83 mmol/L, P < 0.05). The prothrombin time (PT) in the BAL and HBAL groups was significantly shorter than the NBAL and control groups (18.47 ± 4.41 s, 15.5 ± 1.56 s vs 28.67 ± 5.71 s, 21.71 ± 3.4 s, P < 0.05), and the PT in the HBAL group was shortest of all the groups. The albumin in the BAL and HBAL groups significantly increased and a significantly higher level was observed in the HBAL group compared with the BAL group (27.7 ± 1.7 g/L vs 25.24 ± 1.93 g/L). In the HBAL group, the ammonia levels significantly decreased from 54.37 ± 6.86 to 37.75 ± 6.09 after treatment (P < 0.05); there were significant difference in ammonia levels between other the groups (P < 0.05). The levels of antibodies were similar before and after treatment. The PERV RNA and the RT activity in the canine plasma were all negative. CONCLUSION: The HBAL showed great efficiency and safety in the treatment of acute liver failure.展开更多
BACKGROUND: A novel hybrid bioartificial liver(HBAL) was constructed using an anionic resin adsorption column and a multi-layer flat-plate bioreactor containing porcine hepatocytes co-cultured with bone marrow mese...BACKGROUND: A novel hybrid bioartificial liver(HBAL) was constructed using an anionic resin adsorption column and a multi-layer flat-plate bioreactor containing porcine hepatocytes co-cultured with bone marrow mesenchymal stem cells(MSCs). This study aimed to evaluate the microbiological safety of the HBAL by detecting the transmission of porcine endogenous retroviruses(PERVs) into canines with acute liver failure(ALF) undergoing HBAL.METHODS: Eight dogs with ALF received a 6-hour HBAL treatment on the first day after the modeling by D-galactosamine administration. The plasma in the HBAL and the whole blood in the dogs were collected for PERV detection at regular intervals until one year later when the dogs were sacrificed to retrieve the tissues of several organs for immunohistochemistry and Western blotting for the investigation of PERV capsid protein gag p30 in the tissue. Furthermore, HEK293 cells were incubated to determine the in vitro infectivity.RESULTS: PERV RNA and reverse transcriptase activity were observed in the plasma of circuit 3, suggesting that PERV particles released in circuit 3. No positive PERV RNA and reverse transcriptase activity were detected in other plasma. No HEK293 cells were infected by the plasma in vitro. In addition, all PERV-related analyses in peripheral blood mononuclear cells and tissues were negative.CONCLUSION: No transmission of PERVs into ALF canines suggested a reliable microbiological safety of HBAL based on porcine hepatocytes.展开更多
基金Supported by National High Technology Research and Development Program of China 863 Programs No.2006AA02A141 and No.2012AA020505the Medical Research Fund of Guangdong Province No.2009164
文摘AIM: To evaluate a hybrid bioartificial liver support system (HBALSS) in cynomolgus monkeys with acute liver failure.
基金Supported by A grant from the National Natural Science Foundation of China, No. 30772129
文摘AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administration of D-galactosamine. The animals were divided into: the HBAL treatment group (n = 8), in which the canines received a 3-h treatment of HBAL; the bioartificial liver (BAL) treatment group (n = 8), in which the canines received a 3-h treatment of BAL; the non-bioartificial liver (NBAL) treatment group (n = 8), in which the canines received a 3-h treatment of NBAL; the control group (n = 8), in which the canines received no additional treatment. Biochemical parameters and survival time were determined. Levels of xenoantibodies, RNA of porcine endogenous retrovirus (PERV) and reverse transcriptase (RT) activity in the plasma were detected. RESULTS: Biochemical parameters were significantly decreased in all treatment groups. The TBIL level in the HBAL group was lower than that in other groups (2.19 ± 0.55 mmol/L vs 24.2 ± 6.45 mmol/L, 12.47 ± 3.62 mmol/L, 3.77 ± 1.83 mmol/L, P < 0.05). The prothrombin time (PT) in the BAL and HBAL groups was significantly shorter than the NBAL and control groups (18.47 ± 4.41 s, 15.5 ± 1.56 s vs 28.67 ± 5.71 s, 21.71 ± 3.4 s, P < 0.05), and the PT in the HBAL group was shortest of all the groups. The albumin in the BAL and HBAL groups significantly increased and a significantly higher level was observed in the HBAL group compared with the BAL group (27.7 ± 1.7 g/L vs 25.24 ± 1.93 g/L). In the HBAL group, the ammonia levels significantly decreased from 54.37 ± 6.86 to 37.75 ± 6.09 after treatment (P < 0.05); there were significant difference in ammonia levels between other the groups (P < 0.05). The levels of antibodies were similar before and after treatment. The PERV RNA and the RT activity in the canine plasma were all negative. CONCLUSION: The HBAL showed great efficiency and safety in the treatment of acute liver failure.
基金supported by grants from the National Natural Science Foundation of China(81300338)Postdoctoral Fellowship of Jiangsu province(1202057C)Project funding of Clinical Medical Center of Digestive Disease in Jiangsu province(BL2012001)
文摘BACKGROUND: A novel hybrid bioartificial liver(HBAL) was constructed using an anionic resin adsorption column and a multi-layer flat-plate bioreactor containing porcine hepatocytes co-cultured with bone marrow mesenchymal stem cells(MSCs). This study aimed to evaluate the microbiological safety of the HBAL by detecting the transmission of porcine endogenous retroviruses(PERVs) into canines with acute liver failure(ALF) undergoing HBAL.METHODS: Eight dogs with ALF received a 6-hour HBAL treatment on the first day after the modeling by D-galactosamine administration. The plasma in the HBAL and the whole blood in the dogs were collected for PERV detection at regular intervals until one year later when the dogs were sacrificed to retrieve the tissues of several organs for immunohistochemistry and Western blotting for the investigation of PERV capsid protein gag p30 in the tissue. Furthermore, HEK293 cells were incubated to determine the in vitro infectivity.RESULTS: PERV RNA and reverse transcriptase activity were observed in the plasma of circuit 3, suggesting that PERV particles released in circuit 3. No positive PERV RNA and reverse transcriptase activity were detected in other plasma. No HEK293 cells were infected by the plasma in vitro. In addition, all PERV-related analyses in peripheral blood mononuclear cells and tissues were negative.CONCLUSION: No transmission of PERVs into ALF canines suggested a reliable microbiological safety of HBAL based on porcine hepatocytes.