期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Behavior of Aramid Fiber/Ultrahigh Molecular Weight Polyethylene Fiber Hybrid Composites under Charpy Impact and Ballistic Impact 被引量:2
1
作者 YanWU WeihongZHONG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期357-360,共4页
The aramid fiber礥HMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF礑F) were ma-nufactured. By Charpy impact, the low velocity impact behavior of AF礑F composite was studied. And the high vel... The aramid fiber礥HMWPE (ultrahigh molecular weight polyethylene) fiber hybrid composites (AF礑F) were ma-nufactured. By Charpy impact, the low velocity impact behavior of AF礑F composite was studied. And the high velocity impact behavior under ballistic impact was also investigated. The influence of hybrid ratio on the performances of low and high velocity impact was analyzed, and hybrid structures with good impact properties under low velocity impact and high velocity were optimized. For Charpy impact, the maximal impact load increased with the accretion of the AF layers for AF礑F hybrid composites. The total impact power was reduced with the decrease of DF layers and the delamination can result in the increase of total impact power. For ballistic impact, the DF ballistic performance was better than that of the AF and the hybrid ratio had a crucial influence. The failure morphology of AF礑F hybrid composite under Charpy impact and ballistic impact was analyzed. The AF礑F hybrid composites in suitable hybrid ratio could attain better performance than AF or DF composites. 展开更多
关键词 Aramid fiber hybrid composites Charpy impact Ballistic impact
下载PDF
Effect of Hybridization on the Mechanical Properties of Pineapple Leaf Fiber/Kenaf Phenolic Hybrid Composites 被引量:2
2
作者 M.Asim M.Jawaid +2 位作者 K.Abdan M.R.Ishak O.Y.Alothman 《Journal of Renewable Materials》 SCIE 2018年第1期38-46,共9页
In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the... In this study,pineapple leaf fiber(PALF),kenaf fiber(KF)and PALF/KF/phenolic(PF)composites were fabricated and their mechanical properties were investigated.The mechanical properties(tensile,flexural and impact)of the PALF/KF/PF hybrid composites were investigated and compared with PALF/KF composites.The 3P7K exhibited enhanced tensile strength(46.96 MPa)and modulus(6.84 GPa),flexural strength(84.21 MPa)and modulus(5.81 GPa),and impact strength(5.39 kJ/m2)when compared with the PALF/PF and KF/PF composites.Scanning electron microscopy(SEM)was used to observe the fracture surfaces of the tensile testing samples.The microstructure of the 7P3K hybrid composite showed good interfacial bonding and the addition of KF improved the interfacial strength.It has been concluded that the 3P7K ratio allowed obtaining materials with better mechanical properties(tensile,flexural and impact strengths)than PALF/PF and KF/PF composites.The results obtained in this study will be used for further comparative study of untreated hybrid composites with treated hybrid composites. 展开更多
关键词 Pineapple leaf fiber kenaf fiber phenolic resin hybrid composites mechanical properties
下载PDF
Mechanical and wear behaviour of Mg-SiC-Gr hybrid composites 被引量:2
3
作者 K.Soorya Prakash P.Balasundar +2 位作者 S.Nagaraja P.M.Gopal V.Kavimani 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第3期197-206,共10页
The present research deals with development and characterisation of magnesium–SiC–Gr hybrid composites through powder metallurgy route.Morphology analysis of the magnesium and reinforcement powder particles has been... The present research deals with development and characterisation of magnesium–SiC–Gr hybrid composites through powder metallurgy route.Morphology analysis of the magnesium and reinforcement powder particles has been carried out using particle size analyser(PSA)and X-ray diffraction(XRD),and then the mixed powders were analysed through scanning electron microscope(SEM).The developed composite exhibit increased hardness when compared to base material,which could be attributed to the presence of hard SiC.Furthermore,a slight decrease in hardness is observed for the hybrid composite when compared to Mg–SiC composite due to the presence of soft Gr particles.The tribological properties of the developed composite materials were investigated using pin-on-disc wear test apparatus under dry sliding conditions.The wear resistance of the developed composites improved significantly than that of the magnesium matrix due to the upright effect offered by both of the reinforcements.The SEM analysis was carried out on the worn out surfaces for better understanding of wear mechanisms.5%Gr reinforced Mg-10SiC composites confer better wear resistance among the developed composites. 展开更多
关键词 MAGNESIUM hybrid composites Powder metallurgy Sliding wear
下载PDF
STUDY ON TENSILE FAILURE MECHANISM AND HYBRID EFFECT OF INTRAPLY HYBRID COMPOSITES
4
作者 Zeng Qingdun Lin Xuehui 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第1期33-40,共8页
The random critical-core model is adapted to investigate the tensile failuremechanism and hybrid effect of unidirectionally arrayed hybrid composites with alternating low andhigh elongation fibers. By utilizing the mo... The random critical-core model is adapted to investigate the tensile failuremechanism and hybrid effect of unidirectionally arrayed hybrid composites with alternating low andhigh elongation fibers. By utilizing the model in conjunction with the results of the stressconcentration analysis in which the interfacial damage between fiber and matrix is considered, amicroscopic statistical analysis of both the first failure and ultimate failure of hybrids isperformed. The variations of the first failure strain, the ultimate failure strain and the hybrideffect as the interfacial shear strength are obtained quantitatively. The concept of the hybrideffect for strains has been clarified. The present results are compared with available experimentdata and a reasonable agreement is found between the analytical predictions and the experimentalresults. 展开更多
关键词 intraply hybrid composites FAILURE statistical analysis hybrid effect
下载PDF
A STUDY OF THE INFLUENCE OF INTERFACIAL DAMAGE ON STRESS CONCENTRATIONS IN INTRAPLY HYBRID COMPOSITES
5
作者 Zeng Qingdun Lin Xuehui (College of Traffic and Communications, South China University of Technology,Guangzhou 510640, China) 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第2期161-168,共8页
In the axial tensile failure process of intraply hybridcomposites, the breakage of some fibers may lead to interfacialdamage, thus directly influencing the local stress concentrationsnear the sites of breakage. A modi... In the axial tensile failure process of intraply hybridcomposites, the breakage of some fibers may lead to interfacialdamage, thus directly influencing the local stress concentrationsnear the sites of breakage. A modified shear-lag model, in which theinterfacial damage is considered, is proposed. Based on the model,the influence of interfacial shear strength on the stressconcentrations and the lengths of interfacial damage zone is firststudied. The present results also provide an important theoreticalbasis for investigating the failure mechanism and hybrid effects forsuch kind of composites. 展开更多
关键词 intraply hybrid composites interfacial damage stress concentration
下载PDF
The Effects of Stacking Sequence on Dynamic Mechanical Properties and Thermal Degradation of Kenaf/Jute Hybrid Composites
6
作者 Tabrej Khan Mohamed Thariq Hameed Sultan +5 位作者 Mohammad Jawaid Syafiqah Nur Azrie Safri Ain Umaira Md Shah Mohd Shukry Abdul Majid Nik Noriman Zulkepli Haliza Jaya 《Journal of Renewable Materials》 SCIE EI 2021年第1期73-84,共12页
This research focused on the dynamic mechanical and thermal properties of woven mat jute/kenaf/jute(J/K/J)and kenaf/jute/kenaf(K/J/K)hybrid composites.Dynamic mechanical analysis(DMA)and Thermo-gravimetric Analysis(TG... This research focused on the dynamic mechanical and thermal properties of woven mat jute/kenaf/jute(J/K/J)and kenaf/jute/kenaf(K/J/K)hybrid composites.Dynamic mechanical analysis(DMA)and Thermo-gravimetric Analysis(TGA)were used to study the effect of layering sequence on the thermal properties of kenaf/jute hybrid composites.The DMA results;it was found that the differences in the stacking sequence between the kenaf/jute composites do not affect their storage modulus,loss modulus and damping factor.From the TGA and DMA results,it has been shown that stacking sequence has given positive effect to the kenaf/jute hybrid composite compared to pure epoxy composite.This is because kenaf and jute fibre has increased the Tg values of the composites,thus affect the thermal degradation.Results showed that the storage modulus for kenaf/jute hybrid composites increased compared with pure epoxy composites with increasing temperature and the values of remained almost the same at glass transition temperature(Tg),the hybrid composite perhaps due to the improved fibre/matrix interface bonding.The preliminary analysis could provide a new direction for the creation of a novel hybrid composite which offers unique properties which cannot be accomplished in a single material system. 展开更多
关键词 hybrid composites dynamic mechanical thermal analysis(DMTA) thermo-gravimetric analysis
下载PDF
Nonlinear and Rate-Dependent Hysteretic Responses of Active Hybrid Composites
7
作者 Chien-Hong Lin Anastasia Muliana 《Materials Sciences and Applications》 2016年第1期51-72,共22页
Nonlinear electro-mechanical behaviors of piezoelectric materials and viscoelastic nature of polymers result in the overall nonlinear and hysteretic responses of active polymeric composites. This study presents a hybr... Nonlinear electro-mechanical behaviors of piezoelectric materials and viscoelastic nature of polymers result in the overall nonlinear and hysteretic responses of active polymeric composites. This study presents a hybrid-unit-cell model for obtaining the effective nonlinear and rate-dependent hysteretic electro-mechanical responses of hybrid piezocomposites. The studied hybrid piezocomposites consist of unidirectional piezoelectric fibers embedded in a polymeric matrix, which is reinforced with piezoelectric particles. The hybrid-unit-cell model is derived based on a unit-cell model of fiber-reinforced composites consisting of fiber and matrix subcells, in which the matrix subcells are comprised of a unit-cell model of particle-reinforced composites. Nonlinear electro-mechanical responses are considered for the piezoelectric constituents while a viscoelastic solid constitutive model is used for the polymer constituent. The hybrid-unit cell model is used to examine the effects of different responses of the constituents, microstructural arrangements, and loading histories on the overall nonlinear and hysteretic electro-mechanical responses of the hybrid piezocomposites, which are useful in designing active polymeric composites. 展开更多
关键词 PIEZOELECTRIC Polarization Switching MICROMECHANICS hybrid composites Nonlinear Electro-Mechanical Coupling VISCOELASTICITY
下载PDF
Erosion Wear Behaviour of Kenaf/Glass Hybrid Polymer Composites
8
作者 Chandrakanta Mishra Deepak Kumar Mohapatra +2 位作者 Chitta Ranjan Deo Punyapriya Mishra Kiran Kumar Ekka 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期78-89,共12页
The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusi... The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion. 展开更多
关键词 hybrid composites erosion wear VOID micro⁃hardness
下载PDF
Study of the Diffusion Behavior of Seawater Absorption in Multi-Walled Carbon Nanotubes/Halloysite Nanotubes Hybrid Nanofillers Modified Epoxy-Based Glass/Carbon Fiber Composites
9
作者 Praful Choudhari Vivek Kulkarni Sanjeevakumar Khandal 《Modern Mechanical Engineering》 2024年第2期25-38,共14页
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har... In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients. 展开更多
关键词 Glass/Carbon Fiber hybrid composites Multiwall Carbon Nanotubes (MWCNTs) Halloysite Nanotubes (HNTs) Diffusion Behaviour Impact Properties Seawater Aging
下载PDF
Performance Improvement of Kenaf/Glass Polymer Hybrid Composites by Effective Application of Fish Scale Powder as Filler:A Novel Approach
10
作者 Chandrakanta Mishra Deepak Kumar Mohapatra +2 位作者 Chitta Ranjan Deo Chetana Tripathy Kiran Kumar Ekka 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期80-96,共17页
Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridi... Modern technology for developing new items made from renewable resources is becoming more and more popular as a result of rising environmental concern.Recently,contemporary polymer composites have included the hybridization of natural fibers with synthetic ones,along with the inclusion of a variety of biowaste filler for developing sustainable goods.In this work,the kenaf/glass hybrid polyester composites are strengthened by the addition of fish scale(FS),which is taken from the fish􀆳s outermost layer of skin.Five different stacked-order laminates,such as KKKK,KGKG,GKKG,KGGK,and GGGG,are fabricated by using the hand lay-up method with four different weight concentrations of filler content:0%,5%,10%,and 15%.Mechanical possessions such as tensile,flexural,impact strength and micro-hardness have been evaluated through experimentation in accordance with ASTM standards.The experimental findings revealed that,the tensile strength and micro-hardness value of KGKG laminates with 15wt%of FS filler are found to be maximum of 118.72 MPa and 17.82 HV respectively which are 39.67%and 26.11%greater than that of KGKG laminates without FS filler.However,the flexural and impact strength of same laminates with 10 wt%FS filler exhibited a maximum value of 142.77 MPa and 62.08 kJ/m2.In order to corroborate its applicability for structural and building materials in open environment,the dimensional stability of the composite has been studied through moisture absorption test.The influences of FS filler loading on dimensional stability and resistance to moisture absorption capacity of laminates are also investigated.The experimental results reflected that the addition of FS-filler has significantly improved the dimensional stability of the laminates in moist environment by reducing the moisture absorption tendency.To further support the mode of failures,a fractography investigation of fractured surfaces was conducted. 展开更多
关键词 fish scale fiber polyester hybrid composites mechanical properties
下载PDF
Modulator-directed assembly of hybrid composites based on metalorganic frameworks and upconversion nanoparticles
11
作者 Yanhui Feng Xingjun Li +7 位作者 Shan Lu Renfu Li Zhongliang Gong Xiaoying Shang Yifan Pei Wei Zheng Datao Tu Xueyuan Chen 《Nano Research》 SCIE EI CSCD 2023年第1期1482-1490,共9页
Hybrid composites made of metal-organic frameworks(MOFs)and lanthanide-doped upconversion nanoparticles(UCNPs)have attracted considerable interest for their synergistically enhanced functions in various applications s... Hybrid composites made of metal-organic frameworks(MOFs)and lanthanide-doped upconversion nanoparticles(UCNPs)have attracted considerable interest for their synergistically enhanced functions in various applications such as chemical sensing,photocatalysis,anticounterfeiting and nanomedicine.However,precise assembly of MOF/UCNP hybrid composites with tunable morphologies remains a challenge due to the lack of effective synthetic methods and fundamental understanding of the growth mechanisms.Herein,we propose a modulator-directed assembly strategy to synthesize a series of ZIF-8@UCNP composites(ZIF-8=zeolitic imidazolate framework-8).The UCNPs densely paved on the surface of ZIF-8 microcrystals and endowed the composites with intense upconversion blue emission,which were verified by steady-state/transient photoluminescence(PL)spectroscopy and single-particle imaging.Ethylenediamine(EDA)was firstly used as a modulator to fine-tune the predominant MOF facets and realized distinct morphologies of the composites.By adjusting the concentration of EDA from 0 to 25 mmol/L,the morphology of the ZIF-8@UCNP composites was tuned from rhombic dodecahedron(RD)to truncated rhombic dodecahedron(TRD),cube with truncated edges(CTE),cube,and finally a unique form of interpenetration twins(IT).The nucleation and growth process of the ZIF-8@UCNP composites was monitored by time-dependent scanning electron microscopy(SEM)images and the formation mechanism was thoroughly revealed.Furthermore,we demonstrated that the strategy for assembly of morphology-controllable ZIF-8@UCNP composites was generally applicable to various UCNPs with different sizes and shapes.The proposed strategy is expected to open up new avenues for the controllable synthesis of MOF/UCNP composites toward diverse applications. 展开更多
关键词 metal-organic frameworks upconversion nanoparticles hybrid composites ETHYLENEDIAMINE MODULATOR
原文传递
Erosive Wear Study of PPLSF/Glass Fiber Reinforced Hybrid Laminates
12
作者 Chetana Tripathy Deepak Kumar Mohapatra +1 位作者 Chitta Ranjan Deo Punyapriya Mishra 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期68-79,共12页
This work is focused to examine the erosive performance of hybrid Palmyra palm leaf stalk fiber(PPLSF)/glass polyester laminate against solid particle bombardment.A hand lay-up method was adopted for the fabricating f... This work is focused to examine the erosive performance of hybrid Palmyra palm leaf stalk fiber(PPLSF)/glass polyester laminate against solid particle bombardment.A hand lay-up method was adopted for the fabricating four piles of five distinct laminates with different stacking order glass and PPLSF layers.Amongst them,one group of pure PPLSF and pure E-glass laminates were fabricated.The hybrid laminates were exposed to high speed stream of solid sand particle at three distinct impact velocities(48,70 and 82 m/s)and four different angles of impingement(30°,45°,60°and 90°).The effect of particle velocity,angle of impingement and stacking order on both wear rate and efficiency were highlighted.The experimental assessment reveals a significant improvement in erosive wear resistance properties due to hybridization of PPLSF with E-glass.Again,the laminates with PPLSF layer as skin and glass as core layer exhibited better erosive wear resistance properties than other types of laminates.Further,a maximum value of erosion at lower velocity(48 m/s)is also noticed at 45°impingement angle.However,at high velocity of impact 70 m/s and 82 m/s,the maximum rate of erosion has been shifted from 45°impact angle to 60°impact angle.The alternation of this semi-ductile character to semi-brittle character is evidenced by analyzing the experimental data.Further to justify the mode of erosion,the eroded surface samples were inspected by scanning electron microscope(SEM). 展开更多
关键词 hybrid composites erosion wear VOID micro-hardness SEM
下载PDF
Functionally graded structure of a nitride-strengthened Mg_(2)Si-based hybrid composite
13
作者 Jeongho Yang Woongbeom Heogh +15 位作者 Hogi Ju Sukhyun Kang Tae-Sik Jang Hyun-Do Jung Mohammad Jahazi Seung Chul Han Seong Je Park Hyoung Seop Kim Susmita Bose Amit Bandyopadhyay Martin Byung-Guk Jun Young Won Kim Dae-kyeom Kim Rigoberto CAdvincula Clodualdo Aranas Jr Sang Hoon Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1239-1256,共18页
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde... The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations. 展开更多
关键词 Laser powder bed fusion Mg_(2)Si-SiC/nitride hybrid composite Both the thermal diffusion-and chemical reaction-based metallurgy Functionally graded structure Compositional gradient Wear resistance.
下载PDF
Evaluation of Dielectric Properties of CCTO-BT/Epoxy Composites for Electronic Applications
14
作者 Swagatika Mishra Punyapriya Mishra +3 位作者 Punyatoya Mishra Dinesh Kumar Mishra Krushna Prasad Shadangi Deepak Kumar Mohapatra 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期69-77,共9页
In the current study,the calcium copper titanate(CCTO)/epoxy,barium titanate(BT)/epoxy and CCTO-BT/epoxy composite samples with variable volume fractions of CCTO and BT are fabricated using hand lay-up and compression... In the current study,the calcium copper titanate(CCTO)/epoxy,barium titanate(BT)/epoxy and CCTO-BT/epoxy composite samples with variable volume fractions of CCTO and BT are fabricated using hand lay-up and compression moulding process. The composite samples are characterized for the frequency dependence on dielectric properties,conductivity,impedance spectroscopy and electrical modulus.X-ray diffraction(XRD)representation of CCTO-BT/epoxy composite samples confirmed the presence of both CCTO and BT ceramic samples separately. The dielectric characteristics of hybrid CCTO-BT/epoxy composite samples with CCTO∶BT ratio of 40∶60, 60∶40,and 50∶50 was found relatively better than those of single ceramic filler reinforced epoxy composites. AC conductivity analysis shows improvement in the results of hybrid filler-filled CCTO-BT/epoxy composites in comparison with single filler-filled epoxy composite.50∶50 CCTO-BT/epoxy composite shows the best AC conductivity value of~ 2.2 ×10^(-5) ohm^(-1)·m^(-1) at a higher frequency of 1MHz. The impedance analysis confirms the higher insulating properties for hybrid 40∶60 and 60∶40 CCTO-BT/epoxy composites with respect to the single and other hybrid ceramic epoxy composites. The analysis suggests the hybrid CCTO-BT/epoxy composites to be adopted as a potential dielectric material for energy storage devices and other electronic applications. 展开更多
关键词 ceramic filler dielectric characterization hybrid Composite AC conductivity impedance analysis
下载PDF
Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth 被引量:5
15
作者 Xinfeng Zhou Zirui Jia +5 位作者 Xingxue Zhang Bingbing Wang Wei Wu Xuehua Liu Binghui Xu Guanglei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期120-132,共13页
The reasonable design of the composition of the composite materials is of great significance to optimized the electromagnetic(EM)wave absorption performance.Herein,the Ni/NiO@C hybrid composites with tunable Ni propor... The reasonable design of the composition of the composite materials is of great significance to optimized the electromagnetic(EM)wave absorption performance.Herein,the Ni/NiO@C hybrid composites with tunable Ni proportion were successfully synthesized through a two-step process.With the assistance of X-ray diffraction with refinement treatment,the specific proportion of Ni of as-obtained hybrid composites could be obtained.Employing controlling calcination time to adjust the Ni content of Ni/NiO@C hybrid composites,it has been found that the composite carbonized at 500℃exhibited remarkable EM wave absorption with the minimum reflection loss(RLmin)of-49.1 dB at 4.9 mm and the widest effective absorption bandwidth(EABmax)of 4.56 GHz at 2.1 mm.Moreover,by adjusting the Ni source,the optimal EM wave absorption performance could be achieved.Results illustrated that the N3PC with the Ni proportion of 13.17%showed the RLm inas low as-51.1 dB at 2.4 mm and the EABmax was 5.12 GHz at 2.7 mm.It is worth noting that this work demonstrates the relevance of the composition and EM wave absorption performance of hybrid composites,which offers a feasible reference for the absorption mechanism of absorber. 展开更多
关键词 Ni/NiO@C hybrid composites Nickel proportion Multiple-loss mechanism Electromagnetic wave absorption efficiency
原文传递
Effect of Nano-silica Modification on the Tensile Property of SMA/GF/CF/Epoxy Super Hybrid Woven Fabric Composites
16
作者 赵世成 梁文彦 +1 位作者 WANG Zhenqing LEI Hongshuai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1293-1300,共8页
Tensile properties of epoxy casts together with shape memory alloy(SMA), glass(GF) and carbon(CF) woven fabric reinforced epoxy matrix super hybrid composites were investigated, respectively. In order to enhance... Tensile properties of epoxy casts together with shape memory alloy(SMA), glass(GF) and carbon(CF) woven fabric reinforced epoxy matrix super hybrid composites were investigated, respectively. In order to enhance the mechanical strength of this advanced material, two categories of modifications including matrix blending and fiber surface coating by nano-silica were studied. Scanning electron microscopy(SEM) and fiber pull-out tests were adopted to complement the experimental results, respectively. Experimental results reveal that the toughness of epoxy matrix is enhanced significantly by adding 2 wt% nano-silica. The failure mechanism of SMA reinforced hybrid composites is different from that of GF/CF/epoxy composites. Compared with the matrix modification, the fibers modified by coating nano-silica on the surface have better tensile performances. Moreover, the fiber pull-out test results also indicate that composites with fiber surface modification have better interfacial performances. The modification method used in this paper can help to enhance the tensile performance of the mentioned composite materials in real engineering fields. 展开更多
关键词 SMA alloys hybrid composites tensile property MODIFICATION scanning electronmicroscopy (SEM)
下载PDF
A Review of Recent Advances in Hybrid Natural Fiber Reinforced Polymer Composites
17
作者 Jorge Neto Henrique Queiroz +3 位作者 Ricardo Aguiar Rosemere Lima Daniel Cavalcanti Mariana Doina Banea 《Journal of Renewable Materials》 SCIE EI 2022年第3期561-589,共29页
Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such ... Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such as low environmental impact and low cost.However,one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre.One method to increase their performance is hybridization.Therefore,understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest.This paper provides an overview of the recent advances in hybrid natural fiber reinforced polymer composites.First,the main factors that affect the performance of hybrid fiber-reinforced composites were briefly discussed.The effect of hybridization on the mechanical and thermal properties of hybrid composites reinforced with several types of natural fibers(i.e.,sisal,jute,curauá,ramie,banana,etc.)or natural fibers combined with synthetic fibers is pre-sented.Finally,the water absorption behaviour of hybrid fiber-reinforced composites is also discussed.It was con-cluded that the main challenges that need to be addressed in order to increase the use of natural-natural or natural-synthetic hybrid composites in industry are the poor adhesion between natural fibers and matrix,thermal stability and moisture absorption of natural fibers.Some of these challenges were addressed by recent develop-ment in fibers treatment and modification,and product innovation(hybridization). 展开更多
关键词 Natural fiber composites(NFC) hybrid composites mechanical properties thermal properties water absorption
下载PDF
Effect of stacking sequence on physical, mechanical and tribological properties of glass-carbon hybrid composites 被引量:4
18
作者 Gaurav AGARWAL Amar PATNAIK +1 位作者 Rajesh kumar SHARMA Jyoti AGARWAL 《Friction》 SCIE EI CAS 2014年第4期354-364,共11页
A study was done to determine the effect of best stacking sequence(position and orientation)on the mechanical properties,friction and wear response of hybrid composites.The main purpose of the study was to determine t... A study was done to determine the effect of best stacking sequence(position and orientation)on the mechanical properties,friction and wear response of hybrid composites.The main purpose of the study was to determine the best available stacking sequence for which the physical,mechanical and three body abrasive wear rate is optimum.Test for mechanical properties(tensile strength,flexural strength,inter laminar shear strength,impact strength and hardness)was done on glass-carbon hybrid composites.The composites were then subjected to test for three body abrasive wear on a designed experimental setup.Five different factors(sliding velocity,fabric weight percentage,normal load,sliding distance and abrasive particle size)varied in steps to evaluate the friction and three body abrasive wear response of the composites.The design of experiment using Taguchi’s orthogonal array and analysis of variance(ANOVA)was applied to find out minimum specific wear rate.The results revealed the significance in arrangement of two different layers of fabric(glass and carbon)and the difference in properties obtained by them.Using Taguchi experimental analysis it has been observed that three body abrasive wear rate is minimum at 72 cm/s sliding velocity,30 wt.%fabric content,80 N normal load,90 m sliding distance and 125μm abrasive particle size.The scanning electron microscope(SEM)studies revealed the dynamics of three‐body abrasive wear and underlying micro‐mechanisms that result in the analysis of three body abrasive wear. 展开更多
关键词 hybrid composite stacking sequence Taguchi’s method wear mechanism
原文传递
Influence of Weave Structures on the Tribological Properties of Hybrid Kevlar/PTFE Fabric Composites 被引量:14
19
作者 GU Dapeng YANG Yulin +2 位作者 QI Xiaowen DENG Wei SHI Lei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期1044-1051,共8页
The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive mod... The existing research of the woven fabric self-lubricating liner mainly focus on the tribological performance improvements and the service life raised by changing different fiber type combinations, adding additive modification, and performing fiber surface modification. As fabric composites, the weave structures play an important role in the mechanical and tribological performances of the liners. However, hardly any literature is available on the friction and wear behavior of such composites with different weave structures. In this paper, three weave structures (plain, twill 1/3 and satin 8/5) of hybrid Kevlar/PTFE fabric composites are selected and pin-on-flat linear reciprocating wear studies are done on a CETR tester under different pressures and different frequencies. The relationship between the tensile strength and the wear performance are studied. The morphologies of the worn surfaces under the typical test conditions are analyzed by means of scanning electron microscopy (SEM). The analysis results show that at 10 MPa, satin 8/5 performs the best in friction-reduction and antiwear performance, and plain is the worst. At 30 MPa, however, the antiwear performance is reversed and satin 8/5 does not even complete the 2 h wear test at 16 Hz. There is no clear evidence proving that the tensile strength has an influence on the wear performance. So the different tribological performance of the three weave structures of fabric composites may be attributed to the different PTFE proportions in the fabric surface and the different wear mechanisms. The fabric composites are divided into three regions: the lubrication region, the reinforced region and the bonding region. The major mechanisms are fatigue wear and the shear effects of the friction force in the lubrication region. In the reinforced region fiber-matrix de-bonding and fiber breakage are involved. The proposed research proposes a regional wear model and further indicates the wear process and the wear mechanism of fabric composites. 展开更多
关键词 hybrid Kevlar/PTFE fabric composite FRICTION WEAR weave structure scanning electron microscopy
下载PDF
Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process 被引量:1
20
作者 Halil Ibrahim KURT Murat ODUNCUOGLU Ramazan ASMATULU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第10期1119-1126,共8页
Effects of friction stir processing(FSP)parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated.A mathematical formulation was derived to calculate the wear volume los... Effects of friction stir processing(FSP)parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated.A mathematical formulation was derived to calculate the wear volume loss of the composites.The experimental results were contrasted with the results of the proposed model.The influences of sliding distance,tool traverse and rotational speeds,as well as graphite(Gr)and titanium carbide(TiC)volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation.The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance,tool traverse speed,and rotational speed;while the wear volume loss decreased with increasing volume fraction of the reinforcements.A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiC+50% Al2O3 because of improved lubricant ability,as well as resistance to brittleness and wear.New possibilities to develop wear-resistant aluminum-based composites for different industrial applications were proposed. 展开更多
关键词 aluminum alloy friction stir processing WEAR hybrid composite modeling
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部