Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this ...Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.展开更多
The multi axis coupling attitude control of a spacecraft with thrusters for attitude tracking is investigated. The attitude kinematics and dynamics are both described by error quaternions. The four error quaternion dy...The multi axis coupling attitude control of a spacecraft with thrusters for attitude tracking is investigated. The attitude kinematics and dynamics are both described by error quaternions. The four error quaternion dynamic equations are then transformed into four perturbed double integrators via linear transformations. An on off controller is designed based on the perturbed double integrators. The controller is determined by parabolic switching functions of the scalar error quaternion and the transfor...展开更多
To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee...To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.展开更多
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf...The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
The problem of stabilizing a hybrid stochastic interval system is studied in this article. A hybrid interval system with suitable controls will become stable in the sense of mean-square exponential stability. State-fe...The problem of stabilizing a hybrid stochastic interval system is studied in this article. A hybrid interval system with suitable controls will become stable in the sense of mean-square exponential stability. State-feedback controls are designed based on the discrete-time state observations. Controls are put both in the drift and diffusion parts of the system. Criteria are derived in terms of linear matrix inequalities( LMI) to get the controllers. Also one example is given to illustrate our techniques.展开更多
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking com...Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.展开更多
This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault...This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.展开更多
Gain-scheduling has got its wide applications in modern flight control, in which control gains are scheduled with variables such as dynamic pressure and Mach number, to meet dynamic response requirements in different ...Gain-scheduling has got its wide applications in modern flight control, in which control gains are scheduled with variables such as dynamic pressure and Mach number, to meet dynamic response requirements in different flight conditions. Classical gain-scheduling approaches may result in some problems, which can not guarantee global robustness and stability in transitions of different flight conditions. Gain-scheduling problem is systematically investigated from robustness point of view in the paper. Detailed procedures for gain-scheduled controller to achieve both robustness and stability performance are given and applied to a typical flight control system. For switching stability problems of different flight conditions in flight control systems, a new approach is proposed, in which different flight conditions are reduced into a parameter varying plant using interpolation firstly, and then parameter-varying controller design goes next. Though interpolation errors may exist, the robust parameter varying controller design can compensate for those uncertainties and errors, and finally achieve good performance of robustness and switching stability during transitions. Illustrative simulation at last shows satisfactory results.展开更多
In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the ...In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the switch-ing signals of the inverter,interlinking the DC-bus with the AC-bus in an AC/DC microgrid for a seamless interface and regulation of the output power of renewable energy sources(Solar Photovoltaic unit,PMSG-based wind farm),and Battery Energy Storage System.The proposed control approach guarantees the dynamic stability of a hybrid AC/DC microgrid by regulating the associated states of the microgrid system to their intended values.The dynamic stabil-ity of the microgrid system with the proposed control law has been proved using the Control Lyapunov Function.A simulation analysis was performed on a test hybrid AC/DC microgrid system to demonstrate the performance of the proposed control strategy in terms of maintaining power balance while the system’s operating point changed.Furthermore,the superiority of the proposed approach has been demonstrated by comparing its performance with the existing Sliding Mode Control(SMC)approach for a hybrid AC/DC microgrid.展开更多
This study presents a parametric system identification approach to estimate the dynamics of a chemical plant from experimental data and develops a robust PID controller for the plant.Parametric system identification o...This study presents a parametric system identification approach to estimate the dynamics of a chemical plant from experimental data and develops a robust PID controller for the plant.Parametric system identification of the heat exchanger system has been carried out using experimental data and prediction error method.The estimated model of the heat exchanger system is a time-delay model and a robust PID controller for the time-delayed model has been designed considering weighted sensitivity criteria.The mathematical background of parametric system identification,stability analysis,and H∞ weighted sensitivity analysis have been provided in this paper.A graphical plot has been provided to determine the stability region in the(Kp,Ki),(Kp,Kd)and(KuKd)plane.The stability region is a locus dependent on parameters of the controller and frequency,in the parameter plane.展开更多
文摘Radar leveling system is the key equipment for improving the radar mobility and survival capability. A combined quantitative feedback theory (QFT) controller is designed for the radar truck leveling simulator in this paper, which suffers from strong nonlinearities and system parameter uncertainties. QFT can reduce the plant uncertainties and stabilize the system, but it fails to obtain high-precision tracking. This drawback can be solved by a robust QFT control scheme based on zero phase error tracking control (ZPETC) compensation. The combined controller not only possesses high robustness, but greatly improves the system performance. To verify the effiectiveness and the potential of the proposed controller, a series of experiments have been carried out. Experimental results have demonstrated its robustness against a large range of parameters variation and high tracking precision performance, as well as its capability of restraining the load coupling among channels. The combined QFT controller can drive the radar truck leveling platform accurately, quickly and stably.
基金National Natural Science F oundation of China(No.10 172 0 12 )
文摘The multi axis coupling attitude control of a spacecraft with thrusters for attitude tracking is investigated. The attitude kinematics and dynamics are both described by error quaternions. The four error quaternion dynamic equations are then transformed into four perturbed double integrators via linear transformations. An on off controller is designed based on the perturbed double integrators. The controller is determined by parabolic switching functions of the scalar error quaternion and the transfor...
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.706043)Hunan Provincial Natural Science Foundation of China (No.06JJ50121)the National Natural Science Foundation of China (No.60775047).
文摘To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.
基金the National Natural Science Foundation of China (No. 11572215)the Fundamental Research Funds for the Central Universities (No. N160503002)the China Scholarship Council。
文摘The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
基金Fundamental Research Funds for the Central Universities,China(No.2232014D3-13)Natural Science Foundation of Shanghai,China(No.17ZR1401300)
文摘The problem of stabilizing a hybrid stochastic interval system is studied in this article. A hybrid interval system with suitable controls will become stable in the sense of mean-square exponential stability. State-feedback controls are designed based on the discrete-time state observations. Controls are put both in the drift and diffusion parts of the system. Criteria are derived in terms of linear matrix inequalities( LMI) to get the controllers. Also one example is given to illustrate our techniques.
基金Sponsored by Foundation for Excellent Young Teachers in Universities of Henan Province of China(2002[121])
文摘Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.
基金the National Natural Science Foundation of China(62303012,62236002,61911004,62303008)。
文摘This paper investigates the tracking control problem for unmanned underwater vehicles(UUVs)systems with sensor faults,input saturation,and external disturbance caused by waves and ocean currents.An active sensor fault-tolerant control scheme is proposed.First,the developed method only requires the inertia matrix of the UUV,without other dynamic information,and can handle both additive and multiplicative sensor faults.Subsequently,an adaptive fault-tolerant controller is designed to achieve asymptotic tracking control of the UUV by employing robust integral of the sign of error feedback method.It is shown that the effect of sensor faults is online estimated and compensated by an adaptive estimator.With the proposed controller,the tracking error and estimation error can asymptotically converge to zero.Finally,simulation results are performed to demonstrate the effectiveness of the proposed method.
文摘Gain-scheduling has got its wide applications in modern flight control, in which control gains are scheduled with variables such as dynamic pressure and Mach number, to meet dynamic response requirements in different flight conditions. Classical gain-scheduling approaches may result in some problems, which can not guarantee global robustness and stability in transitions of different flight conditions. Gain-scheduling problem is systematically investigated from robustness point of view in the paper. Detailed procedures for gain-scheduled controller to achieve both robustness and stability performance are given and applied to a typical flight control system. For switching stability problems of different flight conditions in flight control systems, a new approach is proposed, in which different flight conditions are reduced into a parameter varying plant using interpolation firstly, and then parameter-varying controller design goes next. Though interpolation errors may exist, the robust parameter varying controller design can compensate for those uncertainties and errors, and finally achieve good performance of robustness and switching stability during transitions. Illustrative simulation at last shows satisfactory results.
文摘In this paper,a Backstepping Global Integral Terminal Sliding Mode Controller(BGITSMC)with the view to enhancing the dynamic stability of a hybrid AC/DC microgrid has been presented.The proposed approach controls the switch-ing signals of the inverter,interlinking the DC-bus with the AC-bus in an AC/DC microgrid for a seamless interface and regulation of the output power of renewable energy sources(Solar Photovoltaic unit,PMSG-based wind farm),and Battery Energy Storage System.The proposed control approach guarantees the dynamic stability of a hybrid AC/DC microgrid by regulating the associated states of the microgrid system to their intended values.The dynamic stabil-ity of the microgrid system with the proposed control law has been proved using the Control Lyapunov Function.A simulation analysis was performed on a test hybrid AC/DC microgrid system to demonstrate the performance of the proposed control strategy in terms of maintaining power balance while the system’s operating point changed.Furthermore,the superiority of the proposed approach has been demonstrated by comparing its performance with the existing Sliding Mode Control(SMC)approach for a hybrid AC/DC microgrid.
文摘This study presents a parametric system identification approach to estimate the dynamics of a chemical plant from experimental data and develops a robust PID controller for the plant.Parametric system identification of the heat exchanger system has been carried out using experimental data and prediction error method.The estimated model of the heat exchanger system is a time-delay model and a robust PID controller for the time-delayed model has been designed considering weighted sensitivity criteria.The mathematical background of parametric system identification,stability analysis,and H∞ weighted sensitivity analysis have been provided in this paper.A graphical plot has been provided to determine the stability region in the(Kp,Ki),(Kp,Kd)and(KuKd)plane.The stability region is a locus dependent on parameters of the controller and frequency,in the parameter plane.