期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Novel flexible hybrid electric system and adaptive online-optimal energy management controller for plug-in hybrid electric vehicles 被引量:4
1
作者 何建辉 杨林 +2 位作者 羌嘉曦 陈自强 朱建新 《Journal of Central South University》 SCIE EI CAS 2012年第4期962-973,共12页
In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the... In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV. 展开更多
关键词 e-CVT flexible full hybrid electric system adaptive online-optimal controller plug-in hybrid vehicle
下载PDF
Implementation of Fuzzy Logic Control into an Equivalent Minimization Strategy for Adaptive Energy Management of A Parallel Hybrid Electric Vehicle
2
作者 Jared A. Diethorn Andrew C. Nix +1 位作者 Mario G. Perhinschi W. Scott Wayne 《Journal of Transportation Technologies》 2024年第1期88-118,共31页
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr... As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC. 展开更多
关键词 hybrid electric Vehicle Fuzzy Logic Adaptive Control Charge Sustainability
下载PDF
Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking 被引量:22
3
作者 ZHANG Jianlong YIN Chengliang ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期42-49,共8页
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th... Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective. 展开更多
关键词 hybrid electric vehicle regenerative braking anti-lock braking fuzzy logic control electro-mechanical hybrid anti-lock braking
下载PDF
Modeling and Control of Parallel Hybrid Electric Vehicle Using Sea-Lion Optimization
4
作者 J.Leon Bosco Raj M.Marsaline Beno 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1441-1454,共14页
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele... This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle. 展开更多
关键词 hybrid electric vehicle(HEV) proportional integral controller parallel HEV fuel efficiency new European driving cycle(NEDC) sea lion optimization(SLnO)
下载PDF
Designing the cooling system of a hybrid electric vehicle with multi-heat source
5
作者 王瑞 王义春 冯朝卿 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期35-41,共7页
In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybr... In order to reduce the power consumption and meet the cooling demand of every heat source component, three kinds of multi-heat source cooling system schemes were designed base on the characteristic of power split hybrid electric vehicle (HEV). Using the numerical simulation meth- od, the power system heat transfer model was built. By comparing the performance of three differ- ent schemes through the Simulink simulation, the best cooling system scheme was found. Base on characteristics of these cooling system structures, the reasonableness of the simulation results were analyzed and verified. The results showed that the cooling system designation based on the numerical simulation could describe the cooling system performance accurately. This method could simplify the design process, improve design efficiency and provide a new way for designing a multi-heat source vehicle cooling system. 展开更多
关键词 hybrid electric vehicle (HEV) numerical simulation multi-heat source oil-cooledbrake resistor cooling system design
下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
6
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery electric Vehicles (BEVS) GASOLINE DIESEL hybrid electric Vehicles (HEVs) Plug-In hybrid Vehicles (PHEVs) Climate Change Carbon Dioxide (CO2) Emissions
下载PDF
Study on load performance of electric motor system used in hybrid electric vehicle
7
作者 李雯 Zhang Chengning +1 位作者 Wang Zhifu Gao Lei 《High Technology Letters》 EI CAS 2010年第1期63-66,共4页
The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model ba... The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model based on Insight structure. The influence of the four control strategies to the load power of the electric motor system used on parallel hybrid electric vehicle is studied. It is found that 80 percent of the motor load power points are under 1/5 of the electric peak power. The motor load power of the power assist control strategy is distributed in the widest range during generating operation, and the motor load power of the global optimization control strategy has the smallest one. 展开更多
关键词 parallel hybrid electric vehicle (PHEV) management strategy motor load power
下载PDF
On Designing of the Main Elements of a Hybrid-Electric Vehicle Driving System
8
作者 Petre-Marian Nicolae Ileana-Diana Nicolae Ionut-Daniel Smarandescu 《Journal of Power and Energy Engineering》 2014年第4期103-112,共10页
The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is ... The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is for a series hybrid vehicle powered by electric storage batteries charged by solar batteries. In the first part of the paper the designing of the electric storage batteries and of the photoelectric system is presented. In the second part of the paper some aspects regarding the designing of the induction motor are presented. Then some aspects concerning the voltage source inverter designing are exposed. 展开更多
关键词 hybrid electric Vehicle Drive system DESIGNING electric Storage Batteries Photoelectric system Induction Motor Voltage Source Inverter
下载PDF
Power-balancing Instantaneous Optimization Energy Management for a Novel Series-parallel Hybrid Electric Bus 被引量:18
9
作者 SUN Dongye LIN Xinyou +1 位作者 QIN Datong DENG Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第6期1161-1170,共10页
Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of c... Energy management(EM) is a core technique of hybrid electric bus(HEB) in order to advance fuel economy performance optimization and is unique for the corresponding configuration. There are existing algorithms of control strategy seldom take battery power management into account with international combustion engine power management. In this paper, a type of power-balancing instantaneous optimization(PBIO) energy management control strategy is proposed for a novel series-parallel hybrid electric bus. According to the characteristic of the novel series-parallel architecture, the switching boundary condition between series and parallel mode as well as the control rules of the power-balancing strategy are developed. The equivalent fuel model of battery is implemented and combined with the fuel of engine to constitute the objective function which is to minimize the fuel consumption at each sampled time and to coordinate the power distribution in real-time between the engine and battery. To validate the proposed strategy effective and reasonable, a forward model is built based on Matlab/Simulink for the simulation and the dSPACE autobox is applied to act as a controller for hardware in-the-loop integrated with bench test. Both the results of simulation and hardware-in-the-loop demonstrate that the proposed strategy not only enable to sustain the battery SOC within its operational range and keep the engine operation point locating the peak efficiency region, but also the fuel economy of series-parallel hybrid electric bus(SPHEB) dramatically advanced up to 30.73% via comparing with the prototype bus and a similar improvement for PBIO strategy relative to rule-based strategy, the reduction of fuel consumption is up to 12.38%. The proposed research ensures the algorithm of PBIO is real-time applicability, improves the efficiency of SPHEB system, as well as suite to complicated configuration perfectly. 展开更多
关键词 city bus hybrid electric powertrain instantaneous optimization energy management control strategy
下载PDF
OPTIMIZATION APPROACH FOR HYBRID ELECTRIC VEHICLE POWERTRAIN DESIGN 被引量:9
10
作者 ZhuZhengli ZhangJianwu YinChengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期30-36,共7页
According to bench test results of fuel economy and engine emission for thereal power-train system of EQ7200HEV car. a 3-D performance map oriented quasi-linear model isdeveloped for the configuration of the powertrai... According to bench test results of fuel economy and engine emission for thereal power-train system of EQ7200HEV car. a 3-D performance map oriented quasi-linear model isdeveloped for the configuration of the powertrain components such as internal combustion engine,traction electric motor, transmission, main retarder and energy storage unit. A genetic algorithmbased on optimization procedure is proposed and applied for parametric optimization of the keycomponents by consideration of requirements of some driving cycles. Through comparison of numericalresults obtained by the genetic algorithm with those by traditional optimization methods, it isshown that the present approach is quite effective and efficient in emission reduction and fueleconomy for the design of the hybrid electric car powertrain. 展开更多
关键词 hybrid electric vehicle(HEV) POWERTRAIN Components sizing Optimization Genetic algorithm
下载PDF
Synthetical Efficiency-based Optimization for the Power Distribution of Power-split Hybrid Electric Vehicles 被引量:12
11
作者 WANG Weida HAN Lijin +2 位作者 XIANG Changle MA Yue LIU Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期58-68,共11页
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat... Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV. 展开更多
关键词 hybrid electric vehicles power-split synthetical efficiency-based optimization power distribution road test
下载PDF
Realization and Analysis of Good Fuel Economy and Kinetic Performance of a Low-cost Hybrid Electric Vehicle 被引量:7
12
作者 WANG Lei ZHANG Jianlong YIN Chengliang ZHANG Yong WU Zhiwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期774-789,共16页
By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind... By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs. 展开更多
关键词 low-cost hybrid electric vehicle hybrid energy storage system(HESS) fuel economy kinetic performance co-simulation cost and performance tradeoff
下载PDF
An optimal energy management development for various configuration of plug-in and hybrid electric vehicle 被引量:8
13
作者 Morteza Montazeri-Gh Mehdi Mahmoodi-K 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1737-1747,共11页
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai... Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions. 展开更多
关键词 plug-in and hybrid electric vehicle energy management CONFIGURATION genetic fuzzy controller fuel consumption EMISSION
下载PDF
Online Learning Control for Hybrid Electric Vehicle 被引量:12
14
作者 LI Weimin XU Guoqing XU Yangsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期98-106,共9页
Improvements in hybrid electric vehicle (HEV) fuel economy and emissions heavily depend on an efficient energy management strategy (EMS). However, the uncertainty of future driving conditions generally cannot be easil... Improvements in hybrid electric vehicle (HEV) fuel economy and emissions heavily depend on an efficient energy management strategy (EMS). However, the uncertainty of future driving conditions generally cannot be easily tackled in EMS design. Most existing EMSs act upon fixed parameters and cannot adapt to varying driving conditions. Therefore, they usually fail to fully explore the potential of these advanced vehicles. In this paper, a novel EMS design procedure based on neural dynamic programming (NDP) is proposed. The NDP is a generic online learning algorithm, which combines stochastic dynamic programming (SDP) and the temporal difference (TD) method. Instead of computing the utility function and optimal control actions through Bellman equations, the NDP algorithm uses two neural networks to approximate them. The weights of these neural networks are updated online by the TD method. It avoids the high computational cost that SDP suffers from and is suitable for real-time implementation. The main advantages of NDP EMS is that it does not rely on prior information related to future driving conditions, and can self-tune with a wide variance in operating conditions. The NDP EMS has been applied to “Qianghua-I”, a prototype of a parallel HEV, using a revolving drum test bench for verification. Experiment results illustrate the potential of the proposed EMS in terms of fuel economy and in keeping state of charge (SOC) deviations at a low level. The proposed research ensures the optimality of NDP EMS, as well as real-time applicability. 展开更多
关键词 hybrid electric vehicle neural dynamic programming energy management strategy
下载PDF
STEADY-STATE AND IDLE OPTIMIZA-TION OF INTERNAL COMBUSTION ENGINE CONTROL STRATEGIES FOR HYBRID ELECTRIC VEHICLES 被引量:6
15
作者 WANG Feng MAO Xiaojian YANG Lin ZHUO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期58-64,共7页
A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the ... A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy. 展开更多
关键词 hybrid electric vehicle Internal combustion engine Steady-state optimization Idle optimization Energy conversion
下载PDF
An Investigation into Regenerative Braking Control Strategy for Hybrid Electric Vehicle 被引量:7
16
作者 PENG Dong(彭栋) +3 位作者 YIN Cheng-liang(殷承良) ZHANG dian-wu(张建武) 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第4期407-412,共6页
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad... Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle. 展开更多
关键词 hybrid electric vehicle regenerative braking torque hydraulic braking torque fuzzy logic control
下载PDF
Study on ultracapacitor-battery hybrid power system for PHEV applications 被引量:14
17
作者 熊瑞 He Hongwen Wang Yi Zhang Xiaowei 《High Technology Letters》 EI CAS 2010年第1期23-28,共6页
For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor ... For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency. 展开更多
关键词 BATTERY ULTRACAPACITOR hybrid power system plug-in hybrid electric vehicle (PHEV) simulation
下载PDF
ENERGY MANAGEMENT STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES 被引量:4
18
作者 PuJinhuan YinChengliang ZhangJianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期215-219,共5页
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith... Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests. 展开更多
关键词 hybrid powertrain hybrid electric vehicle (HEV) Energy management strategy(EMS) Real-time control Field test
下载PDF
Parameters matching and optimization of parallel hybrid electric vehicle powertrain 被引量:7
19
作者 陈勇 Chen Xiaokai Lin Yi 《High Technology Letters》 EI CAS 2010年第1期34-38,共5页
Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driv... Aiming at the development of parallel hybrid electric vehicle (PHEV) powertrain, parameter matching and optimization are presented, According to the performance of PHEV, the optimization range of engine, motor, driveline gear ratio and battery parameters are determined. And then a two-level optimization problem is formulated based on analytical target cascading (ATC). At the system level, the optimization of the whole vehicle fuel economy is carried out, while the tractive performance is defined as the constraints. The optimized parameters are cascaded to the subsystem as the optimization targets. At the subsystem level, the final drive and transmission design are optimized to make the ratios as close to the targets as possible. The optimization result shows that the fuel economy had improved significantly, while the tractive performance maintains the former level. 展开更多
关键词 parallel hybrid electric vehicle (PHEV) parameters matching OPTIMIZATION analytical target cascading (ATC) POWERTRAIN
下载PDF
Energy Control of Plug-In Hybrid Electric Vehicles Using Model Predictive Control With Route Preview 被引量:4
20
作者 Yang Zhao Yanguang Cai Qiwen Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1948-1955,共8页
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic... The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy. 展开更多
关键词 Energy management model predictive control(MPC) optimal control plug-in hybrid electric vehicle(PHEV)
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部