A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identi...A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.展开更多
Nitrogen (N) is a crucial nutrient vital for the growth and productivity of maize. However, excessive nitrogen application can result in numerous environmental and ecological problems, such as water pollution, biodive...Nitrogen (N) is a crucial nutrient vital for the growth and productivity of maize. However, excessive nitrogen application can result in numerous environmental and ecological problems, such as water pollution, biodiversity loss, and greenhouse gas emissions. Therefore, breeding maize hybrids resilient to low nitrogen conditions is crucial for sustainable agriculture, especially under low nitrogen conditions. Consequently, this study aimed to evaluate the combining ability and heterosis of maize lines, recognize promising hybrids, and study gene action controlling key traits under low and recommended N stress conditions. The half-diallel mating design hybridized seven maize inbreds, resulting in 21 F1 hybrids. These hybrids, along with two high-yielding commercial hybrids (SC10 and TWC310), were evaluated in field trials under recommended (290 kg/ha) and low N (166 kg N/ha) conditions. Significant variations were observed among assessed hybrids for all measured traits, with non-additive gene action being predominant for grain yield and its related characteristics under recommended and low N conditions. Inbred lines P105 and P106 were recognized as effective combiners for earliness, with P105 also excelling in shorter plant height and lower ear placement. In addition, P101, P102, and P104 were identified as good combiners for increasing grain yield and related attributes under low N conditions. The crosses P105 × P106 and P106 × P107 demonstrated outstanding heterotic effects for earliness, while hybrids P101 × P102 and P102 × P104 exhibited remarkable heterotic effects for grain yield low nitrogen stress conditions. These promising hybrids could be considered for commercial use after further evaluation. Strong positive correlations were found between grain yield and ear height, plant height, number of kernels per row, and 1000-grain weight, highlighting their importance for indirect selection to enhance the grain yield of maize under low N stress conditions.展开更多
Modeling the boundary layer flow of ternary hybrid nanofluids is important for understanding and optimizing their thermal performance,particularly in applications where enhanced heat transfer and fluid dynamics are es...Modeling the boundary layer flow of ternary hybrid nanofluids is important for understanding and optimizing their thermal performance,particularly in applications where enhanced heat transfer and fluid dynamics are essential.This study numerically investigates the boundary layer flow of alumina-copper-silver/water nanofluid over a permeable stretching/shrinking sheet,incorporating both first and second-order velocity slip.The mathematical model is solved in MATLAB facilitated by the bvp4c function that employs the finite difference scheme and Lobatto IIIa formula.The solver successfully generates dual solutions for the model,and further analysis is conducted to assess their stability.The findings reported that only one of the solutions is stable.For the shrinking sheet case,increasing the first-order velocity slip delays boundary layer separation and enhances heat transfer,while,when the sheet is stretched,the second-order velocity slip accelerates separation and improves heat transfer.Boundary layer separation is most likely to occur when the sheet is shrinking;however,this can be controlled by adjusting the velocity slip with the inclusion of boundary layer suction.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to ...In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to the selfsupervised approach to eliminate the need for labels,thus avoiding the accompanied high cost of data collection and annotation.We first construct the dense connection network(DCnet)with three modules:the feature extraction module for extracting channel characteristic from a large amount of channel data,the feature fusion module for combining multidimensional features,and the prediction module for generating the HBF matrices.Next,we establish a lightweight network architecture,named as LDnet,to reduce the number of model parameters and computational complexity.The proposed sub-6GHz assisted approach eliminates mmWave pilot resources compared to the method using mmWave channel information directly.The simulation results indicate that the proposed DCnet and LDnet can achieve the spectral efficiency that is superior to the traditional orthogonal matching pursuit(OMP)algorithm by 13.66% and 10.44% under LOS scenarios and by 32.35% and 27.75% under NLOS scenarios,respectively.Moreover,the LDnet achieves 98.52% reduction in the number of model parameters and 22.93% reduction in computational complexity compared to DCnet.展开更多
Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 3...Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.展开更多
The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development patte...The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.展开更多
Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular ...Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.展开更多
A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1....A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.展开更多
A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical e...A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.展开更多
We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating...We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.展开更多
We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 ...We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.展开更多
We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber op- erating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating me...We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber op- erating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating method. With low speed, the WS2 nanoplatelets embedded in polyvinyl alcohol could be coated on a BK7 glass substrate coated with high-refractive-index thin polymer. The shortest pulse width of 1.6 gs with a repetition rate of 76.9 kHz is obtained. As the pump power increases to 9 W, the maximum output power is measured to be 250 mW, corresponding to a single pulse energy of 3.25 μJ. To the best of our knowledge, this is the first time to obtain dual-wavelength Q-switched solid-state laser using few-layer WS2 nanoplatelets.展开更多
We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is end...We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.展开更多
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it i...We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.展开更多
We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alc...We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alcohol) film. A small piece of the film is then sandwiched between two fiber ferrules and is incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.4nm with a pump power threshold of 11.8mW, a pulse repetition rate tunable from 22.79 to 61.43kHz, and the smallest pulse width of 7.00 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 62 dB indicating the high stability of the laser. These results show that the ZnO powder has a great potential to be used for pulsed laser applications.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresp...We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.展开更多
An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was rea...An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was realized for continuous wave operation. By further increasing the pump power, stable Q-switched pulse trains are obtained when the pump power ranges from 38 mW to 125 mW, corresponding to repetition rate varying from 40.84 kHz to 66.24 kHz, the pulse width from 2.0 μs to 1.0 μs,and the highest single pulse energy of 40.6 nJ respectively.展开更多
We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
基金Project supported by the Fund from Nanjing University of Posts and Telecommunications,China(Grant Nos.JUH219002 and JUH219007)the Key Research and Development Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘A high-performance LED-side-pumped two-rod Nd,Ce:YAG laser with continuous-wave(CW) and acousto–optical(A-O) Q-switched operation is demonstrated in this work. A symmetrically shaped flat–flat cavity with two identical LEDside-pumped laser modules is employed for power scalability. In the CW regime, the maximum output average power of laser at 1064 nm is 4.41 W, corresponding to a maximum optical conversion efficiency of 5.3% and a slope efficiency is 12.4%. In the active Q-switched regime, the pulse energy of laser reaches as high as 0.89 m J at a repetition rate of 800 Hz with a pulse width of 457.2 ns, the corresponding highest peak output power is 1.94 k W and the M~2 factor is measured to be about 8.8. To the best of the authors' knowledge, this is the first demonstration and the highest performance of a CW LED-side-pumped two-rod laser Nd,Ce:YAG with Watt-level output reported so far.
基金Princess Nourah bint Abdulrahman University Research Supporting Project Number PNURSP2025R241,Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Nitrogen (N) is a crucial nutrient vital for the growth and productivity of maize. However, excessive nitrogen application can result in numerous environmental and ecological problems, such as water pollution, biodiversity loss, and greenhouse gas emissions. Therefore, breeding maize hybrids resilient to low nitrogen conditions is crucial for sustainable agriculture, especially under low nitrogen conditions. Consequently, this study aimed to evaluate the combining ability and heterosis of maize lines, recognize promising hybrids, and study gene action controlling key traits under low and recommended N stress conditions. The half-diallel mating design hybridized seven maize inbreds, resulting in 21 F1 hybrids. These hybrids, along with two high-yielding commercial hybrids (SC10 and TWC310), were evaluated in field trials under recommended (290 kg/ha) and low N (166 kg N/ha) conditions. Significant variations were observed among assessed hybrids for all measured traits, with non-additive gene action being predominant for grain yield and its related characteristics under recommended and low N conditions. Inbred lines P105 and P106 were recognized as effective combiners for earliness, with P105 also excelling in shorter plant height and lower ear placement. In addition, P101, P102, and P104 were identified as good combiners for increasing grain yield and related attributes under low N conditions. The crosses P105 × P106 and P106 × P107 demonstrated outstanding heterotic effects for earliness, while hybrids P101 × P102 and P102 × P104 exhibited remarkable heterotic effects for grain yield low nitrogen stress conditions. These promising hybrids could be considered for commercial use after further evaluation. Strong positive correlations were found between grain yield and ear height, plant height, number of kernels per row, and 1000-grain weight, highlighting their importance for indirect selection to enhance the grain yield of maize under low N stress conditions.
基金The authors acknowledged Universiti Putra Malaysia for the Putra Grant that was received(GP-IPM 9787700)supported by Grant PN-III-P4-PCE-2021-0993,UEFISCDI,Romania.
文摘Modeling the boundary layer flow of ternary hybrid nanofluids is important for understanding and optimizing their thermal performance,particularly in applications where enhanced heat transfer and fluid dynamics are essential.This study numerically investigates the boundary layer flow of alumina-copper-silver/water nanofluid over a permeable stretching/shrinking sheet,incorporating both first and second-order velocity slip.The mathematical model is solved in MATLAB facilitated by the bvp4c function that employs the finite difference scheme and Lobatto IIIa formula.The solver successfully generates dual solutions for the model,and further analysis is conducted to assess their stability.The findings reported that only one of the solutions is stable.For the shrinking sheet case,increasing the first-order velocity slip delays boundary layer separation and enhances heat transfer,while,when the sheet is stretched,the second-order velocity slip accelerates separation and improves heat transfer.Boundary layer separation is most likely to occur when the sheet is shrinking;however,this can be controlled by adjusting the velocity slip with the inclusion of boundary layer suction.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金supported in part by the National Natural Science Foundation of China under Grants 62325107,62341107,62261160650,and U23A20272in part by the Beijing Natural Science Foundation under Grant L222002.
文摘In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to the selfsupervised approach to eliminate the need for labels,thus avoiding the accompanied high cost of data collection and annotation.We first construct the dense connection network(DCnet)with three modules:the feature extraction module for extracting channel characteristic from a large amount of channel data,the feature fusion module for combining multidimensional features,and the prediction module for generating the HBF matrices.Next,we establish a lightweight network architecture,named as LDnet,to reduce the number of model parameters and computational complexity.The proposed sub-6GHz assisted approach eliminates mmWave pilot resources compared to the method using mmWave channel information directly.The simulation results indicate that the proposed DCnet and LDnet can achieve the spectral efficiency that is superior to the traditional orthogonal matching pursuit(OMP)algorithm by 13.66% and 10.44% under LOS scenarios and by 32.35% and 27.75% under NLOS scenarios,respectively.Moreover,the LDnet achieves 98.52% reduction in the number of model parameters and 22.93% reduction in computational complexity compared to DCnet.
文摘Accurate estimation of evapotranspiration(ET)is crucial for efficient water resource management,particularly in the face of climate change and increasing water scarcity.This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers,selected according to PRISMA guidelines,to evaluate the performance of Hybrid Artificial Neural Networks(HANNs)in ET estimation.The findings demonstrate that HANNs,particularly those combining Multilayer Perceptrons(MLPs),Recurrent Neural Networks(RNNs),and Convolutional Neural Networks(CNNs),are highly effective in capturing the complex nonlinear relationships and tem-poral dependencies characteristic of hydrological processes.These hybrid models,often integrated with optimization algorithms and fuzzy logic frameworks,significantly improve the predictive accuracy and generalization capabilities of ET estimation.The growing adoption of advanced evaluation metrics,such as Kling-Gupta Efficiency(KGE)and Taylor Diagrams,highlights the increasing demand for more robust performance assessments beyond traditional methods.Despite the promising results,challenges remain,particularly regarding model interpretability,computational efficiency,and data scarcity.Future research should prioritize the integration of interpretability techniques,such as attention mechanisms,Local Interpretable Model-Agnostic Explanations(LIME),and feature importance analysis,to enhance model transparency and foster stakeholder trust.Additionally,improving HANN models’scalability and computational efficiency is crucial,especially for large-scale,real-world applications.Approaches such as transfer learning,parallel processing,and hyperparameter optimization will be essential in overcoming these challenges.This study underscores the transformative potential of HANN models for precise ET estimation,particularly in water-scarce and climate-vulnerable regions.By integrating CNNs for automatic feature extraction and leveraging hybrid architectures,HANNs offer considerable advantages for optimizing water management,particularly agriculture.Addressing challenges related to interpretability and scalability will be vital to ensuring the widespread deployment and operational success of HANNs in global water resource management.
基金funded by“The Fourth Phase of 2022 Advantage Discipline Engineering-Control Science and Engineering”,grant number 4013000063.
文摘The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids.
基金supported via funding from Prince Sattam bin Abdulaziz University(Grant No.PSAU/2024/R/1446)。
文摘Fluid flow through porous spaces with variable porosity has wide-range applications,notably in biomedical and thermal engineering,where it plays a vital role in comprehending blood flow dynamics within cardiovascular systems,heat transfer and thermal management systems improve efficiency using porous materials with variable porosity.Keeping these important applications in view,in current study blood-based hybrid nanofluid flow has considered on a convectively heated sheet.The sheet exhibits the properties of a porous medium with variable porosity and extends in both the x and y directions.Blood has used as base fluid in which the nanoparticles of Cu and Cu O have been mixed.Thermal radiation,space-dependent,and thermal-dependent heat sources have been incorporated into the energy equation,while magnetic effects have been integrated into the momentum equations.Dimensionless variables have employed to transform the modeled equations into dimensionless form and facilitating their solution using bvp4c approach.It has concluded in this study that,both the primary and secondary velocities augmented with upsurge in variable porous factor and declined with escalation in stretching ratio,Casson,magnetic,and slip factors along x-and y-axes.Thermal distribution has grown up with upsurge in Casson factor,magnetic factor,thermal Biot number,and thermal/space-dependent heat sources while has retarded with growth in variable porous and stretching ratio factors.The findings of this investigation have been compared with the existing literature,revealing a strong agreement among present and established results that ensured the validation of the model and method used in this work.
文摘A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)
文摘A transmission-type tungsten disulfide(WS_2)-based saturable absorber(SA) is fabricated and applied to passively Q-switched Nd:YVO_4 laser.The WS_2 nanosheets are deposited on a quartz substrate by the vertical evaporation method.By inserting the WS2 SA into the plano-concave laser cavity,we achieve 153-ns pulses with an average output power of1.19 W at 1064 nm.To the best of our knowledge,both of them are the best results among those obtained by the Q-switched solid-state lasers with WS_2-based absorbers.The repetition rate ranges from 1.176 MHz to 1.578 MHz.As far as we know,it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61077017 and 61378028)the Program for New Century Excellent Talents in University,China (Grant Nos.NCET-11-0069 and NCET-10-0291)the 111 Project (Grant No.B13042)
文摘We demonstrate a passively Q-switched tunable erbium-doped fiber laser (EDFL) based on graphene as a saturable absorber (SA). A three-port optical circulator (OC) and a strain-induced tunable fiber Bragg grating (TFBG) are used as the two end mirrors in an all-fiber linear cavity. The Q-switched EDFL has a low pump threshold of 23.8 mW. The pulse repetition rate of the fiber laser can be widely changed from 9.3 kHz to 69.7 kHz by increasing the pump power from 23.8 mW to 219.9 mW. The minimum pulse duration is 1.7 p.s and the highest pulse energy is 25.4 nJ. The emission wavelength of the laser can be tuned from 1560.43 nm to 1566.27 nm by changing the central wavelength of the straininduced TFBG.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775053,51572053,51777046,and 61705140)
文摘We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.
基金Project supported by the National Scientific Research Project of China(Grant No.61177047)Beijing Municipal Natural Science Foundation+1 种基金China(Grant No.1102005)the Basic Research Foundation of Beijing University of Technology,China(Grant No.X3006111201501)
文摘We demonstrate a passively Q-switched Yb:LSO laser based on tungsten disulphide (WS2) saturable absorber op- erating at 1034 nm and 1056 nm simultaneously. The saturable absorbers were fabricated by spin coating method. With low speed, the WS2 nanoplatelets embedded in polyvinyl alcohol could be coated on a BK7 glass substrate coated with high-refractive-index thin polymer. The shortest pulse width of 1.6 gs with a repetition rate of 76.9 kHz is obtained. As the pump power increases to 9 W, the maximum output power is measured to be 250 mW, corresponding to a single pulse energy of 3.25 μJ. To the best of our knowledge, this is the first time to obtain dual-wavelength Q-switched solid-state laser using few-layer WS2 nanoplatelets.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274188 and 11574170
文摘We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.
文摘We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate a Q-switched erbium-doped fiber laser (EDFL) using a newly developed zinc oxide- (ZnO) based saturable absorber (SA). The SA is fabricated by embedding a prepared ZnO powder into a poly(vinyl alcohol) film. A small piece of the film is then sandwiched between two fiber ferrules and is incorporated in an EDFL cavity for generating a stable Q-switching pulse train. The EDFL operates at 1560.4nm with a pump power threshold of 11.8mW, a pulse repetition rate tunable from 22.79 to 61.43kHz, and the smallest pulse width of 7.00 μs. The Q-switching pulse shows no spectral modulation with a peak-to-pedestal ratio of 62 dB indicating the high stability of the laser. These results show that the ZnO powder has a great potential to be used for pulsed laser applications.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288+2 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.
基金Project supported by the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)
文摘An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was realized for continuous wave operation. By further increasing the pump power, stable Q-switched pulse trains are obtained when the pump power ranges from 38 mW to 125 mW, corresponding to repetition rate varying from 40.84 kHz to 66.24 kHz, the pulse width from 2.0 μs to 1.0 μs,and the highest single pulse energy of 40.6 nJ respectively.
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.