期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Maximum Power Extraction Control Algorithm for Hybrid Renewable Energy System
1
作者 N.Kanagaraj Mohammed Al-Ansi 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期769-784,共16页
In this research,a modified fractional order proportional integral derivate(FOPID)control method is proposed for the photovoltaic(PV)and thermoelectric generator(TEG)combined hybrid renewable energy system.The faster ... In this research,a modified fractional order proportional integral derivate(FOPID)control method is proposed for the photovoltaic(PV)and thermoelectric generator(TEG)combined hybrid renewable energy system.The faster tracking and steady-state output are aimed at the suggested maximum power point tracking(MPPT)control technique.The derivative order number(μ)value in the improved FOPID(also known as PIλDμ)control structure will be dynamically updated utilizing the value of change in PV array voltage output.During the transient,the value ofμis changeable;it’s one at the start and after reaching the maximum power point(MPP),allowing for strong tracking characteristics.TEG will use the freely available waste thermal energy created surrounding the PVarray for additional power generation,increasing the system’s energy conversion efficiency.A high-gain DC-DC converter circuit is included in the system to maintain a high amplitude DC input voltage to the inverter circuit.The proposed approach’s performance was investigated using an extensive MATLAB software simulation and validated by comparing findings with the perturbation and observation(P&O)type MPPT control method.The study results demonstrate that the FOPID controller-based MPPT control outperforms the P&O method in harvesting the maximum power achievable from the PV-TEG hybrid source.There is also a better control action and a faster response. 展开更多
关键词 Fractional order PID controller MPPT boost converter PV array thermoelectric generator hybrid renewable energy system
下载PDF
Autonomous Multi-Factor Energy Flows Controller (AmEFC): Enhancing Renewable Energy Management with Intelligent Control Systems Integration
2
作者 Dimitrios Vezeris Maria Polyzoi +2 位作者 Georgios Kotakis Pagona Kleitsiotou Eleni Tsotsopoulou 《Energy and Power Engineering》 2023年第11期399-442,共44页
The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs,... The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids. 展开更多
关键词 MICRO-GRID Smart Grid Interconnection hybrid renewable system Energy Flow Controller Battery Management Hydro Pump Off-Grid Solutions Ioniki Autonomous
下载PDF
Techno-economic analysis of a hybrid renewable energy system integrated with productive activities in an underdeveloped rural region of eastern Indonesia
3
作者 Alya Nurul Shafira Subhan Petrana +1 位作者 Rahma Muthia Widodo Wahyu Purwanto 《Clean Energy》 EI CSCD 2023年第6期1247-1267,共21页
The Southwest Maluku region in eastern Indonesia is considered a frontier,outermost and underdeveloped region.Its inhabitants live on isolated islands,including the residents of Mahaleta Village,where only 9.4%of the ... The Southwest Maluku region in eastern Indonesia is considered a frontier,outermost and underdeveloped region.Its inhabitants live on isolated islands,including the residents of Mahaleta Village,where only 9.4%of the community have limited access to electricity.This study aimed to design an economically feasible hybrid renewable energy(RE)system based on solar and wind energy to integrate with the productive activities of the village.The study developed conceptual schemes to meet the demand for electricity from the resi-dential,community,commercial and productive sectors of the village.The analysis was performed using a techno-economic approach.The hybrid system was designed using the HOMER Pro optimization function,and cold-storage and dryer systems were designed to support related productive activities.The optimized design of the hybrid RE system comprised 271.62 kW of solar photovoltaics,80 kW of wind turbines and a 1-MWh lead-acid battery.We found that the hybrid RE system would only be economically feasible with a full-grant incentive and an electricity tariff of$0.0808/kWh.However,the productive activity schemes were all economically feasible,with a cold-storage cost of$0.035/kg and a drying cost of$0.082/kg.Integrating the hybrid RE system with productive activities can improve the economic feasibility of the energy system and create more jobs as well as increase income for the local community. 展开更多
关键词 underdeveloped region hybrid renewable energy system photovoltaics wind turbine Indonesia
原文传递
Multi-Objective Sizing of Solar-Wind-Hydro Hybrid Power System with Doubled Energy Storages Under Optimal Coordinated Operational Strategy
4
作者 Su Guo Aynur Kurban +3 位作者 Yi He Feng Wu Huanjin Pei Guotao Song 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第6期2144-2155,共12页
More and more attention has been paid to the high penetration of renewable energy in recent years.The randomness and intermittency of solar and wind energy make it an inevitable trend that renewables are coupled with ... More and more attention has been paid to the high penetration of renewable energy in recent years.The randomness and intermittency of solar and wind energy make it an inevitable trend that renewables are coupled with energy storage technologies.Pumped hydro storage(PHS)is the most widelyused storage form in the power grid but the capacity is limited by geographic conditions.The concentrated solar power(CSP)plant with a thermal energy storage(TES)system can realize easier grid connections and effective peak shaving.Therefore,this paper proposes a solar-wind-hydro hybrid power system with PHS-TES double energy storages,and investigates the optimal coordinated operational strategy and multi-objective sizing.The optimal sizing problem which considers the minimum levelized cost of energy(LCOE)and loss of power supply probability(LPSP)as objectives is solved by multi-objective particle swarm optimization.Moreover,the seasonal uncertainties of renewables are considered by applying a scenario-based analysis using Kmeans clustering.Finally,a case study reveals the effectiveness of the coordinated operational strategy and double energy storages from the perspectives of economy and reliability.The comparisons of optimal sizing results show that the PV-WindCSP-PHS system decreases the LCOE by 19.1%compared to a PV-Wind-CSP system under the same LPSP,and reduces the LPSP compared to PV-Wind-PHS systems with limited reservoir capacity,which indicates that the proposed system with double energy storages has better economy and reliability performance compared to single storage. 展开更多
关键词 Coordinated operation strategy double energy storages hybrid renewable energy system multi-objective sizing optimization solar-wind-hydro
原文传递
Multi-objective Optimization of Production Scheduling Using Particle Swarm Optimization Algorithm for Hybrid Renewable Power Plants with Battery Energy Storage System 被引量:3
5
作者 Jon Martinez-Rico Ekaitz Zulueta +2 位作者 Ismael Ruiz de Argandona Unai Femandez-Gamiz Mikel Armendia 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第2期285-294,共10页
Considering the increasing integration of renewable energies into the power grid,batteries are expected to play a key role in the challenge of compensating the stochastic and intermittent nature of these energy source... Considering the increasing integration of renewable energies into the power grid,batteries are expected to play a key role in the challenge of compensating the stochastic and intermittent nature of these energy sources.Besides,the deployment of batteries can increase the benefits of a renewable power plant.One way to increase the profits with batteries studied in this paper is performing energy arbitrage.This strategy is based on storing energy at low electricity price moments and selling it when electricity price is high.In this paper,a hybrid renewable energy system consisting of wind and solar power with batteries is studied,and an optimization process is conducted in order to maximize the benefits regarding the dayahead production scheduling of the plant.A multi-objective cost function is proposed,which,on the one hand,maximizes the obtained profit,and,on the other hand,reduces the loss of value of the battery.A particle swarm optimization algorithm is developed and fitted in order to solve this non-linear multi-objective function.With the aim of analyzing the importance of considering both the energy efficiency of the battery and its loss of value,two more simplified cost functions are proposed.Results show the importance of including the energy efficiency in the cost function to optimize.Besides,it is proven that the battery lifetime increases substantially by using the multi-objective cost function,whereas the profitability is similar to the one obtained in case the loss of value is not considered.Finally,due to the small difference in price among hours in the analyzed Iberian electricity market,it is observed that low profits can be provided to the plant by using batteries just for arbitrage purposes in the day-ahead market. 展开更多
关键词 Battery energy storage system energy arbitrage hybrid renewable energy system particle swarm optimization
原文传递
A Hybrid of Grey Wolf Optimization and Genetic Algorithm for Optimization of Hybrid Wind and Solar Renewable Energy System
6
作者 Diriba Kajela Geleta Mukhdeep Singh Manshahia 《Journal of the Operations Research Society of China》 EI CSCD 2022年第4期749-762,共14页
In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf op... In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf optimization and genetic algorithm(HGWOGA).HGWOGA was applied to this hybrid problem through three procedures.First,the balance between the exploration and the exploitation process was done by grey wolf optimizer algorithm.Then,we divided the population into subpopulation and used the arithmetical crossover operator to utilize the dimension reduction and the population partitioning processes.At last,mutation operator was applied in the whole population in order to refrain from the premature convergence and trapping in local minima.MATLAB code was designed to implement the proposed methodology.The result of this algorithm is compared with the results of iteration method,GWO,GA,artificial bee colony(ABC)and particle swarm optimization(PSO)techniques.The results obtained by this algorithm are better when compared with those mentioned in the text. 展开更多
关键词 hybrid renewable energy OPTIMIZATION Nature-inspired algorithm Grey wolf optimization Genetic algorithm
原文传递
Consideration of some optimization techniques to design a hybrid energy system for a building in Cameroon
7
作者 Djeudjo Temene Hermann Talla Konchou Franck Armel +1 位作者 TCHINDA René NJOMO Donatien 《Energy and Built Environment》 2022年第2期233-249,共17页
To solve the problem energy deficit encountered in developing countries,Hybrid Renewable Energy System(HRES)appears to be a very good solution.The paper presents the optimal design of a hybrid renewable energy system ... To solve the problem energy deficit encountered in developing countries,Hybrid Renewable Energy System(HRES)appears to be a very good solution.The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability(LPSP),economic i.e Cost of Electricity(COE)and Net Present Cost(NPC)and environmental i.e Total Greenhouse gases emission(TGE)aspects using Particle Swarm Optimization(PSO),hybrid Particle Swarm Optimization-Grey Wolf Optimization(PSOGWO),hybrid Grey-Wolf Optimization-Cuckoo Search(GWOCS)and Sine-Cosine Algorithm(SCA)for a Community multimedia center in MAKENENE,Cameroon;where inhabitants have to spend at times 3 to 4 days of blackout.Seven configurations(Scenarios)of hybrid energy systems including PV,WT,Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW.Four values of the derating factor i.e 0.6,0.7,0.8 and 0.9 are used in this analysis and the best value is 0.9.Scenario 3 with LPSP,COE,NPC,TGE and RF of 0.003%,0.15913$/kWh,46953.0485$,2.3406 kg/year and 99.8%respectively when using GWOCS is found to be the most appropriate for the Community multimedia center.The optimal Scenario is obtained for a system comprising of 18 kW of P_(pv-rated)corresponding to 69 solar panels,3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of N_(dg). 展开更多
关键词 hybrid renewable energy system Optimization Loss of power Supply probability Cost of electricity Net present cost Emission of greenhouse gases
原文传递
Techno-economic optimization of a sustainable system to cogenerate power and water for remote areas
8
作者 Sina Akhavan Shams Rouhollah Ahmadi 《Clean Energy》 EI CSCD 2023年第3期602-619,共18页
In this study,a new water and power cogeneration plant,employing photovoltaic(PV)and photovoltaic-thermal(PVT)panels simultaneously,is designed and optimized for a village struggling to provide energy and potable wate... In this study,a new water and power cogeneration plant,employing photovoltaic(PV)and photovoltaic-thermal(PVT)panels simultaneously,is designed and optimized for a village struggling to provide energy and potable water in Iran.The system includes a solar energy unit to generate clean electricity and heat,and a reverse osmosis unit to produce drinking water.Techno-economic optimization is performed by implementing a genetic algorithm,and a comprehensive water and energy management strategy is designed and presented in detail,expandable for future works.A new method,the logarithmic model,is used to calculate the depth of discharge(DOD)of lithium-ion batteries,which was previously a fixed and predetermined value in previous papers.Various indices,the constraints of the optimization process,are also introduced to measure the reliabilities of different units.The effects of the system components on total cost are investigated and a comprehensive sensitivity analysis is performed to find the best solution to increase the penetration of renewable-energy systems.The results reveal that considering the depth of discharge of batteries and water storage tank capacity as decision variables reduces the system’s life-cycle cost(by 5.1%for changeable DODs).Furthermore,the simultaneous use of PV and PVT panels decreases the life-cycle cost considerably by≤19%compared with the use of only PVT panels.Additionally,the cost of the battery causes a decrease in the cost of electricity storage and the cost of producing and storing fresh water. 展开更多
关键词 renewable hybrid system integrated water and power system PV-PVT-RO-battery system genetic algorithm OPTIMIZATION
原文传递
Combined cold,heat and power(CCHP)systems and fuel cells for CCHP applications:a topological review
9
作者 Nganyang Paul Bayendang Mohamed Tariq Kahn Vipin Balyan 《Clean Energy》 EI CSCD 2023年第2期436-491,共56页
As the basis for the study,this manuscript was written at a time when the energy crisis is affecting most parts of the world and most es-pecially the prevailing and rampant electricity crisis in most developing countr... As the basis for the study,this manuscript was written at a time when the energy crisis is affecting most parts of the world and most es-pecially the prevailing and rampant electricity crisis in most developing countries.As a result,50 combined cooling,heating and power(CCHP)systems studies were reviewed,which included the internal combustion engine(ICE),Stirling engine,biomass,micro turbine,solar and biogas,photovoltaic(PV)and gas turbine,wind turbine,PV and micro-turbine,solid-oxide and phosphoric-acid fuel cells(FCs),ICE and thermoelectric generator,low-temperature(LT)polymer electrolyte membrane(PEM),inlet air throttling gas turbine,ground source heat pump(GSHP)micro gas turbine and PV,ICE and GSHP,ICE with dehumidification and refrigeration,5-kW PEM FC,thermoelectric cooler and LT-PEM FC,Stirling engine and molten carbonate FC,thermo-acoustic organic Rankine cycle,solar-thermal,geothermal,integrated energy systems,power-and heat-storage systems,energy-conversion systems,thermodynamic and thermo-economic optimization strategies,working fluids based on hydrogen,helium as well as ammonia,H_(2)O,CO_(2) etc.Of these reviewed CCHP systems,FC-based CCHP systems were of the greatest interest,particularly the PEM FC.Consequently,FCs were further investigated,whereby the seven popular types of FCs identified and classified were summarily compared with each other,from which the PEM FC was preferred due to its practical popularity.However,PEM FCs,like all FCs,are susceptible to the fuel-starvation phenomenon;therefore,six FC-assisted schemes were examined,from which the FC assisted with the supercapacitor and battery technique was the most widely applied.In sum,the significance of the study entails assorted CCHP systems,FCs,their highlights,their applications and their pros and cons in a single reference document that anyone can easily use to holistically understand the characteristics of the CCHP systems.The study concludes with our perspective,by which we formulate and propose an alternative innovative unique CCHP system model under research,which is based exclusively on green tech-nologies:FCs,lithium-ion battery,ultracapacitor,thermoelectricity and an energy-management system using MATLAB■. 展开更多
关键词 CHP/CCHP systems fuel cells full cells fuel starvation hybrid power and renewable energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部