To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China, we used needles and seeds from P. densiflora, P. sylvestris, and P. densiflora × P. sylvestris collected from natural...To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China, we used needles and seeds from P. densiflora, P. sylvestris, and P. densiflora × P. sylvestris collected from natural stands or experimental stations to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSRs). Total genomic DNA was extracted and subjected to sequence analysis of the pine cpDNA SSR marker Pt15169. Results show that morphological characters from 4-year old seedlings did not correlate with sequence variants of this marker. Marker haplotypes from all P. sylvestris trees had a CTAT element that was absent from all sampled P. densiflora trees. However, both haplotype classes involving this insertion/deletion element were found in a P. densiflora × P. sylvestris population and its seedling progeny. It was concluded that the P. densiflora × P. sylvestris accessions sampled from Jilin, China resulted from bi-directional crosses, as evidenced by both species’ cpDNA haplotypes within the hybrid swarm population.展开更多
In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. ...In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. Accordingly,the low probability of intercept(LPI) performance of system can be improved by collaboratively optimizing transmit power and waveform. For target radar cross section(RCS) prediction, we design a random RCS prediction model based on electromagnetic simulation(ES) of target. For waveform selection, we build a waveform library to adaptively manage the frequency modulation slope and pulse width of radar waveform. For power allocation,the CCP is employed to balance tracking accuracy and power resource. The Bayesian Cramér-Rao lower bound(BCRLB) is adopted as a criterion to measure target tracking accuracy. The hybrid intelli gent algorithms, in which the stochastic simulation is integrated into the genetic algorithm(GA), are used to solve the stochastic optimization problem. Simulation results demonstrate that the proposed JWSPA strategy can save more transmit power than the traditional fixed waveform scheme under the same target tracking accuracy.展开更多
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ...The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.展开更多
The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a...The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a forecasting perspective.The complex characteristics of implied volatility risk index such as non-linearity structure,time-varying and nonstationarity motivate us to apply a nonlinear polynomial Hammerstein model with known structure and unknown parameters.We use the Hybrid Particle Swarm Optimization(HPSO)tool to identify the model parameters of nonlinear polynomial Hammerstein model.Findings indicate that,following a nonlinear polynomial behaviour cascaded to an autoregressive with exogenous input(ARX)behaviour,the fear index in US financial market is significantly affected by COVID-19-infected cases in the US,COVID-19-infected cases in the world and COVID-19-infected cases in China,respectively.Statistical performance indicators provided by the developed models show that COVID-19-infected cases in the US are particularly powerful in predicting the Cboe volatility index compared to COVID-19-infected cases in the world and China(MAPE(2.1013%);R2(91.78%)and RMSE(0.6363 percentage points)).The proposed approaches have also shown good convergence characteristics and accurate fits of the data.展开更多
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ...As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.展开更多
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat...Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution.展开更多
光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量...光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量机(support vector machine,SVM)、粒子群优化支持向量机(particle swarm optimized support vector machine,PSO-SVM)、遗传优化支持向量机(genetic optimized support vector machine,GA-SVM)、麻雀优化支持向量机(sparrow optimized support vector machine,SSA-SVM)、灰狼优化支持向量机(gray wolf optimized support vector machine,GWO-SVM)和鲸鱼优化支持向量机(whale optimized support vector machine,WOA-SVM)算法。首先,六种SVM混合算法都克服了SVM诊断结果易受参数初始值影响的缺点,识别精度相较传统SVM算法都有所提升,但是识别时间都增加。其次,7种算法中SCSO-SVM识别效果最好,克服了SVM易受参数初始值的影响,相较SVM识别精度提高了约9.4594%;是因为更能有效找到SVM惩罚因子和核函数参数。然后,对于同一种算法而言,算法的识别精度是随输入特征减少而降低的,是因为输入特征越少,越不能有效表征光伏组件在不同故障类型下的输出属性。但算法的识别时间却不是随输入特征减少而减短。所以选取合适的输入特征才能兼顾算法的故障识别准确率和效率。最后,发现七种算法的识别效果依赖于数据集的影响。原因可能是各个算法参数选择过多导致泛化性有差异,且依赖参数初始值选择。展开更多
基金supported by a grant from the Next-Generation BioGreen 21 Program, Rural Development Administration, Republic of Korea (PJ009052)
文摘To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China, we used needles and seeds from P. densiflora, P. sylvestris, and P. densiflora × P. sylvestris collected from natural stands or experimental stations to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSRs). Total genomic DNA was extracted and subjected to sequence analysis of the pine cpDNA SSR marker Pt15169. Results show that morphological characters from 4-year old seedlings did not correlate with sequence variants of this marker. Marker haplotypes from all P. sylvestris trees had a CTAT element that was absent from all sampled P. densiflora trees. However, both haplotype classes involving this insertion/deletion element were found in a P. densiflora × P. sylvestris population and its seedling progeny. It was concluded that the P. densiflora × P. sylvestris accessions sampled from Jilin, China resulted from bi-directional crosses, as evidenced by both species’ cpDNA haplotypes within the hybrid swarm population.
基金This work was supported by the National Natural Science Foundation of China(62071440,61671241).
文摘In this paper, we propose a joint waveform selection and power allocation(JWSPA) strategy based on chance-constraint programming(CCP) for manned/unmanned aerial vehicle hybrid swarm(M/UAVHS) tracking a single target. Accordingly,the low probability of intercept(LPI) performance of system can be improved by collaboratively optimizing transmit power and waveform. For target radar cross section(RCS) prediction, we design a random RCS prediction model based on electromagnetic simulation(ES) of target. For waveform selection, we build a waveform library to adaptively manage the frequency modulation slope and pulse width of radar waveform. For power allocation,the CCP is employed to balance tracking accuracy and power resource. The Bayesian Cramér-Rao lower bound(BCRLB) is adopted as a criterion to measure target tracking accuracy. The hybrid intelli gent algorithms, in which the stochastic simulation is integrated into the genetic algorithm(GA), are used to solve the stochastic optimization problem. Simulation results demonstrate that the proposed JWSPA strategy can save more transmit power than the traditional fixed waveform scheme under the same target tracking accuracy.
基金National Natural Science Foundation of China(No.70971020)the Subject of Ministry of Education of Hunan Province,China(No.13C818)+3 种基金the Project of Industrial Science and Technology Support of Hengyang City,Hunan Province,China(No.2013KG63)the Open Project Program of Artificial Intelligence Key Laboratory of Sichuan Province,Sichuan University of Science and Engineering,China(No.2012RYJ03)the Fund Project of Humanities and Social Sciences,Ministry of Education of China(No.13YJCZH147)the Special Fund for Shanghai Colleges' Outstanding Young Teachers' Scientific Research Projects,China(No.ZZGJD12033)
文摘The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.
基金This research has been funded by Scientific Research Deanship at University of Ha’il,Saudi Arabia through Project number RG-20210.
文摘The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a forecasting perspective.The complex characteristics of implied volatility risk index such as non-linearity structure,time-varying and nonstationarity motivate us to apply a nonlinear polynomial Hammerstein model with known structure and unknown parameters.We use the Hybrid Particle Swarm Optimization(HPSO)tool to identify the model parameters of nonlinear polynomial Hammerstein model.Findings indicate that,following a nonlinear polynomial behaviour cascaded to an autoregressive with exogenous input(ARX)behaviour,the fear index in US financial market is significantly affected by COVID-19-infected cases in the US,COVID-19-infected cases in the world and COVID-19-infected cases in China,respectively.Statistical performance indicators provided by the developed models show that COVID-19-infected cases in the US are particularly powerful in predicting the Cboe volatility index compared to COVID-19-infected cases in the world and China(MAPE(2.1013%);R2(91.78%)and RMSE(0.6363 percentage points)).The proposed approaches have also shown good convergence characteristics and accurate fits of the data.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20114307120032)the National Natural Science Foundation of China(71201167)
文摘As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters.
文摘Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution.
文摘光伏阵列通常被安装在恶劣的室外环境中,因此在运行过程中易发生故障。为了准确识别光伏阵列的故障类型,提出沙猫群优化支持向量机(sand cat swarm optimization support vector machine,SCSO-SVM)用于光伏组件故障识别,且对比支持向量机(support vector machine,SVM)、粒子群优化支持向量机(particle swarm optimized support vector machine,PSO-SVM)、遗传优化支持向量机(genetic optimized support vector machine,GA-SVM)、麻雀优化支持向量机(sparrow optimized support vector machine,SSA-SVM)、灰狼优化支持向量机(gray wolf optimized support vector machine,GWO-SVM)和鲸鱼优化支持向量机(whale optimized support vector machine,WOA-SVM)算法。首先,六种SVM混合算法都克服了SVM诊断结果易受参数初始值影响的缺点,识别精度相较传统SVM算法都有所提升,但是识别时间都增加。其次,7种算法中SCSO-SVM识别效果最好,克服了SVM易受参数初始值的影响,相较SVM识别精度提高了约9.4594%;是因为更能有效找到SVM惩罚因子和核函数参数。然后,对于同一种算法而言,算法的识别精度是随输入特征减少而降低的,是因为输入特征越少,越不能有效表征光伏组件在不同故障类型下的输出属性。但算法的识别时间却不是随输入特征减少而减短。所以选取合适的输入特征才能兼顾算法的故障识别准确率和效率。最后,发现七种算法的识别效果依赖于数据集的影响。原因可能是各个算法参数选择过多导致泛化性有差异,且依赖参数初始值选择。