The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is ...The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is for a series hybrid vehicle powered by electric storage batteries charged by solar batteries. In the first part of the paper the designing of the electric storage batteries and of the photoelectric system is presented. In the second part of the paper some aspects regarding the designing of the induction motor are presented. Then some aspects concerning the voltage source inverter designing are exposed.展开更多
The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uni...The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.展开更多
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal...A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.展开更多
This paper models and optimizes an air-based battery thermal management system(BTMS)in a battery module with 36 battery lithium-ion cells.A design of experiments is performed to study the effects of three key paramete...This paper models and optimizes an air-based battery thermal management system(BTMS)in a battery module with 36 battery lithium-ion cells.A design of experiments is performed to study the effects of three key parameters(i.e.,mass flow rate of cooling air,heat flux from the battery cell to the cooling air,and passage spacing size)on the battery thermal performance.Three metrics are used to evaluate the BTMS thermal performance,including(i)the maximum temperature in the battery module,(ii)the temperature uniformity in the battery module,and(iii)the pressure drop.It is found that(i)increasing the total mass flow rate may result in a more non-unifbi*m distribution of the passage mass flow rate among passages,and(ii)a large passage spacing size may worsen the temperature uniformity on the battery walls.Optimization is also performed to optimize the passage spacing size.Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 K to 2.1 K by 91.2%,and the maximum temperature difference among the battery cells is reduced from 25.7 K to 6.4 K by 75.1%.展开更多
The 48V mild hybrid system is a cost-efficient solution for original equipment manufacturers to meet increasingly stringent fuel consumption requirements.However,hybrid functions such as auto-stop/start and brake rege...The 48V mild hybrid system is a cost-efficient solution for original equipment manufacturers to meet increasingly stringent fuel consumption requirements.However,hybrid functions such as auto-stop/start and brake regeneration are unavailablewhen a 48V battery is at very low temperature because of its limited charge and discharge capability.Therefore,it is important to develop cost-efficient thermal management to warm-up the battery of a 48V mild hybrid electric vehicle(HEV)to recover hybrid functions quickly in cold climate.Following the model-based“V”process,we first define the requirements and then design different mechanisms to heat a 48V battery.Afterward,we build a 48V battery model in LMS AMESim and conduct co-simulation with simplified battery management system and hybrid control unit algorithms in MATLAB Simulink for analysis.Finally,we carry out a series of vehicle experiments at low temperature and observe the effect of heating to validate the design.Both simulation results and experimental data show that a cold 48V battery placed in a cabin with hot air can be heated effectively in the developed“Enhanced Generator Mode with 48V Battery”mode.The entire design is in a newly developed software that cyclically charges and discharges a 48V battery for quick warm-up in cold temperature without needing any additional hardware such as a heater,making it a cost-efficient solution for HEVs.展开更多
This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation...This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simula-tion and experimental studies. The simulation and experimental results are presented to validate the proposed technique.展开更多
文摘The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is for a series hybrid vehicle powered by electric storage batteries charged by solar batteries. In the first part of the paper the designing of the electric storage batteries and of the photoelectric system is presented. In the second part of the paper some aspects regarding the designing of the induction motor are presented. Then some aspects concerning the voltage source inverter designing are exposed.
文摘The equivalent circuit model of battery and the analytic model of series battery uniformities are setup. The analysis shows that it is the key to maintain small voltage difference between cells in order to improve uniformities. Therefore a new technique combining low voltage difference, big current charging and bi-directional charge equalizer system is put forward and designed. The test shows that the energy transferring dynamic equalization system betters the series battery uniformities and protection during charging and discharging, improves the battery performance and extends the use life of series battery.
基金Supported by the National Science and Technology Support Program(2013BAG12B01)Foundational and Advanced Research Program General Project of Chongqing City(cstc2013jcyjjq60002)
文摘A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.
文摘This paper models and optimizes an air-based battery thermal management system(BTMS)in a battery module with 36 battery lithium-ion cells.A design of experiments is performed to study the effects of three key parameters(i.e.,mass flow rate of cooling air,heat flux from the battery cell to the cooling air,and passage spacing size)on the battery thermal performance.Three metrics are used to evaluate the BTMS thermal performance,including(i)the maximum temperature in the battery module,(ii)the temperature uniformity in the battery module,and(iii)the pressure drop.It is found that(i)increasing the total mass flow rate may result in a more non-unifbi*m distribution of the passage mass flow rate among passages,and(ii)a large passage spacing size may worsen the temperature uniformity on the battery walls.Optimization is also performed to optimize the passage spacing size.Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 K to 2.1 K by 91.2%,and the maximum temperature difference among the battery cells is reduced from 25.7 K to 6.4 K by 75.1%.
文摘The 48V mild hybrid system is a cost-efficient solution for original equipment manufacturers to meet increasingly stringent fuel consumption requirements.However,hybrid functions such as auto-stop/start and brake regeneration are unavailablewhen a 48V battery is at very low temperature because of its limited charge and discharge capability.Therefore,it is important to develop cost-efficient thermal management to warm-up the battery of a 48V mild hybrid electric vehicle(HEV)to recover hybrid functions quickly in cold climate.Following the model-based“V”process,we first define the requirements and then design different mechanisms to heat a 48V battery.Afterward,we build a 48V battery model in LMS AMESim and conduct co-simulation with simplified battery management system and hybrid control unit algorithms in MATLAB Simulink for analysis.Finally,we carry out a series of vehicle experiments at low temperature and observe the effect of heating to validate the design.Both simulation results and experimental data show that a cold 48V battery placed in a cabin with hot air can be heated effectively in the developed“Enhanced Generator Mode with 48V Battery”mode.The entire design is in a newly developed software that cyclically charges and discharges a 48V battery for quick warm-up in cold temperature without needing any additional hardware such as a heater,making it a cost-efficient solution for HEVs.
文摘This paper proposes a powertrain controller for a solar photovoltaic battery powered hybrid electric vehicle (HEV). The main objective of the proposed controller is to ensure better battery management, load regulation, and maximum power extraction whenever possible from the photovoltaic panels. The powertrain controller consists of two levels of controllers named lower level controllers and a high-level control algorithm. The lower level controllers are designed to perform individual tasks such as maximum power point tracking, battery charging, and load regulation. The perturb and observe based maximum power point tracking algorithm is used for extracting maximum power from solar photovoltaic panels while the battery charging controller is designed using a PI controller. A high-level control algorithm is then designed to switch between the lower level controllers based on different operating conditions such as high state of charge, low state of charge, maximum battery current, and heavy load by respecting the constraints formulated. The developed algorithm is evaluated using theoretical simula-tion and experimental studies. The simulation and experimental results are presented to validate the proposed technique.