A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network co...Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network consisting of distributed devices distributed at various distances,which monitors the physical and environmental conditions using sensors.Wireless sensor networks have many uses,including the built-in sensor on the outside of the pipeline or installed to support bridge structures,robotics,healthcare,environmental monitoring,etc.Wireless Sensor networks could be used to monitor the temperature,pressure,leak detection and sabotage of transmission lines.Wireless sensor networks are vulnerable to various attacks.Cryptographic algorithms have a good role in information security for wireless sensor networks.Now,various types of cryptographic algorithms provide security in networks,but there are still some problems.In this research,to improve the power of these algorithms,a new hybrid encryption algorithm for monitoring energy transmission lines and increasing the security of wireless sensor networks is proposed.The proposed hybrid encryption algorithm provides the security and timely transmission of data in wireless sensor networks to monitor the transmission pipelines.The proposed algorithm fulfills three principles of cryptography:integrity,confidentiality and authentication.The details of the algorithm and basic concepts are presented in such a way that the algorithm can be operational.展开更多
Wireless sensor networks (WSNs) are mostly deployed in a remote working environment, since sensor nodes are small in size, cost-efficient, low-power devices, and have limited battery power supply. Because of limited p...Wireless sensor networks (WSNs) are mostly deployed in a remote working environment, since sensor nodes are small in size, cost-efficient, low-power devices, and have limited battery power supply. Because of limited power source, energy consumption has been considered as the most critical factor when designing sensor network protocols. The network lifetime mainly depends on the battery lifetime of the node. The main concern is to increase the lifetime with respect to energy constraints. One way of doing this is by turning off redun-dant nodes to sleep mode to conserve energy while active nodes can provide essential k-coverage, which improves fault-tolerance. Hence, we use scheduling algorithms that turn off redundant nodes after providing the required coverage level k. The scheduling algorithms can be implemented in centralized or localized schemes, which have their own advantages and disadvantages. To exploit the advantages of both schemes, we employ both schemes on the network according to a threshold value. This threshold value is estimated on the performance of WSN based on network lifetime comparison using centralized and localized algorithms. To extend the network lifetime and to extract the useful energy from the network further, we go for compromise in the area covered by nodes.展开更多
In the contemporary era of unprecedented innovations such as Internet of Things(IoT),modern applications cannot be imagined without the presence of Wireless Sensor Network(WSN).Nodes in WSN use neighbour discovery(ND)...In the contemporary era of unprecedented innovations such as Internet of Things(IoT),modern applications cannot be imagined without the presence of Wireless Sensor Network(WSN).Nodes in WSN use neighbour discovery(ND)protocols to have necessary communication among the nodes.Neighbour discovery process is crucial as it is to be done with energy efficiency and minimize discovery latency and maximize percentage of neighbours discovered.The current ND approaches that are indirect in nature are categorized into methods of removal of active slots from wake-up schedules and intelligent addition of new slots.The two methods are found to have certain drawbacks.Thefirst category disturbs original integrity of wake-up schedules leading to reduced chances of discovering new nodes in WSN as neighbours.When second category is followed,it may have inefficient slots in the wake-up schedules leading to performance degradation.Therefore,the motivation behind the work in this paper is that by combining the two categories,it is possible to reap benefits of both and get rid of the limitations of the both.Making a hybrid is achieved by introducing virtual nodes that help maximize performance by ensuring original integrity of wake-up schedules and adding of efficient active slots.Thus a Hybrid Approach to Neighbour Discovery(HAND)protocol is realized in WSN.The simulation study revealed that HAND outperforms the existing indirect ND models.展开更多
The Wireless Sensor Networks(WSN)is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission.The clustering technique employed to group...The Wireless Sensor Networks(WSN)is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission.The clustering technique employed to group the collection of nodes for data transmission and each node is assigned with a cluster head.The major concern with the identification of the cluster head is the consideration of energy consumption and hence this paper proposes an hybrid model which forms an energy efficient cluster head in the Wireless Sensor Network.The proposed model is a hybridization of Glowworm Swarm Optimization(GSO)and Artificial Bee Colony(ABC)algorithm for the better identification of cluster head.The performance of the proposed model is compared with the existing techniques and an energy analysis is performed and is proved to be more efficient than the existing model with normalized energy of 5.35%better value and reduction of time complexity upto 1.46%.Above all,the proposed model is 16%ahead of alive node count when compared with the existing methodologies.展开更多
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
In order to make up for the deficiencies and insufficiencies that In order to make up for the deficiencies and insufficiencies that wireless sensor network is constituted absolutely by static or dynamic sensor nodes. ...In order to make up for the deficiencies and insufficiencies that In order to make up for the deficiencies and insufficiencies that wireless sensor network is constituted absolutely by static or dynamic sensor nodes. So a deployment mechanism for hybrid nodes barrier coverage (HNBC)is proposed in wireless sensor network, which collaboratively consists of static and dynamic sensor nodes. We introduced the Voronoi diagram to divide the whole deployment area. According to the principle of least square method, and the static nodes are used to construct the reference barrier line (RBL). And we implemented effectively barrier coverage by monitoring whether there is a coverage hole in the deployment area, and then to determine whether dynamic nodes need limited mobility to redeploy the monitoring area. The simulation results show that the proposed algorithm improved the coverage quality, and completed the barrier coverage with less node moving distance and lower energy consumption, and achieved the expected coverage requirements展开更多
Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of resear...Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of research has become increasingly popular due to the host of useful applications it can potentially serve.A deep analysis of the concepts associated with this domain reveals that the two main problems that are to be tackled here are throughput enhancement and network security improvement.The present article takes on one of these two issues namely the throughput enhancement.For the purpose of improving network productivity,a hybrid clustering based packet propagation protocol has been proposed.The protocol makes use of not only clustering mechanisms of machine learning but also utilizes the traditional forwarding function approach to arrive at an optimum model.The result of the simulation is a novel transmission protocol which significantly enhances network productivity and increases throughput value.展开更多
Heterogeneous wireless sensor network( HWSN) is composed of different functional nodes and is widely applied. With the deployment in hostile environment,the secure problem of HWSN is of great importance; moreover,it b...Heterogeneous wireless sensor network( HWSN) is composed of different functional nodes and is widely applied. With the deployment in hostile environment,the secure problem of HWSN is of great importance; moreover,it becomes complex due to the mutual characteristics of sensor nodes in HWSN. In order to enhance the network security,an asymmetric key pre-distributed management scheme for HWSN is proposed combining with authentication process to further ensure the network security; meanwhile,an effective authentication method for newly added nodes is presented. Simulation result indicates that the proposed scheme can improve the network security while reducing the storage space requirement efficiently.展开更多
Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malwar...Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
文摘Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network consisting of distributed devices distributed at various distances,which monitors the physical and environmental conditions using sensors.Wireless sensor networks have many uses,including the built-in sensor on the outside of the pipeline or installed to support bridge structures,robotics,healthcare,environmental monitoring,etc.Wireless Sensor networks could be used to monitor the temperature,pressure,leak detection and sabotage of transmission lines.Wireless sensor networks are vulnerable to various attacks.Cryptographic algorithms have a good role in information security for wireless sensor networks.Now,various types of cryptographic algorithms provide security in networks,but there are still some problems.In this research,to improve the power of these algorithms,a new hybrid encryption algorithm for monitoring energy transmission lines and increasing the security of wireless sensor networks is proposed.The proposed hybrid encryption algorithm provides the security and timely transmission of data in wireless sensor networks to monitor the transmission pipelines.The proposed algorithm fulfills three principles of cryptography:integrity,confidentiality and authentication.The details of the algorithm and basic concepts are presented in such a way that the algorithm can be operational.
文摘Wireless sensor networks (WSNs) are mostly deployed in a remote working environment, since sensor nodes are small in size, cost-efficient, low-power devices, and have limited battery power supply. Because of limited power source, energy consumption has been considered as the most critical factor when designing sensor network protocols. The network lifetime mainly depends on the battery lifetime of the node. The main concern is to increase the lifetime with respect to energy constraints. One way of doing this is by turning off redun-dant nodes to sleep mode to conserve energy while active nodes can provide essential k-coverage, which improves fault-tolerance. Hence, we use scheduling algorithms that turn off redundant nodes after providing the required coverage level k. The scheduling algorithms can be implemented in centralized or localized schemes, which have their own advantages and disadvantages. To exploit the advantages of both schemes, we employ both schemes on the network according to a threshold value. This threshold value is estimated on the performance of WSN based on network lifetime comparison using centralized and localized algorithms. To extend the network lifetime and to extract the useful energy from the network further, we go for compromise in the area covered by nodes.
文摘In the contemporary era of unprecedented innovations such as Internet of Things(IoT),modern applications cannot be imagined without the presence of Wireless Sensor Network(WSN).Nodes in WSN use neighbour discovery(ND)protocols to have necessary communication among the nodes.Neighbour discovery process is crucial as it is to be done with energy efficiency and minimize discovery latency and maximize percentage of neighbours discovered.The current ND approaches that are indirect in nature are categorized into methods of removal of active slots from wake-up schedules and intelligent addition of new slots.The two methods are found to have certain drawbacks.Thefirst category disturbs original integrity of wake-up schedules leading to reduced chances of discovering new nodes in WSN as neighbours.When second category is followed,it may have inefficient slots in the wake-up schedules leading to performance degradation.Therefore,the motivation behind the work in this paper is that by combining the two categories,it is possible to reap benefits of both and get rid of the limitations of the both.Making a hybrid is achieved by introducing virtual nodes that help maximize performance by ensuring original integrity of wake-up schedules and adding of efficient active slots.Thus a Hybrid Approach to Neighbour Discovery(HAND)protocol is realized in WSN.The simulation study revealed that HAND outperforms the existing indirect ND models.
文摘The Wireless Sensor Networks(WSN)is a self-organizing network with random deployment of wireless nodes that connects each other for effective monitoring and data transmission.The clustering technique employed to group the collection of nodes for data transmission and each node is assigned with a cluster head.The major concern with the identification of the cluster head is the consideration of energy consumption and hence this paper proposes an hybrid model which forms an energy efficient cluster head in the Wireless Sensor Network.The proposed model is a hybridization of Glowworm Swarm Optimization(GSO)and Artificial Bee Colony(ABC)algorithm for the better identification of cluster head.The performance of the proposed model is compared with the existing techniques and an energy analysis is performed and is proved to be more efficient than the existing model with normalized energy of 5.35%better value and reduction of time complexity upto 1.46%.Above all,the proposed model is 16%ahead of alive node count when compared with the existing methodologies.
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.
文摘In order to make up for the deficiencies and insufficiencies that In order to make up for the deficiencies and insufficiencies that wireless sensor network is constituted absolutely by static or dynamic sensor nodes. So a deployment mechanism for hybrid nodes barrier coverage (HNBC)is proposed in wireless sensor network, which collaboratively consists of static and dynamic sensor nodes. We introduced the Voronoi diagram to divide the whole deployment area. According to the principle of least square method, and the static nodes are used to construct the reference barrier line (RBL). And we implemented effectively barrier coverage by monitoring whether there is a coverage hole in the deployment area, and then to determine whether dynamic nodes need limited mobility to redeploy the monitoring area. The simulation results show that the proposed algorithm improved the coverage quality, and completed the barrier coverage with less node moving distance and lower energy consumption, and achieved the expected coverage requirements
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
文摘Wireless sensor networks are a collection of intelligent sensor devices that are connected to one another and have the capability to exchange information packets amongst themselves.In recent years,this field of research has become increasingly popular due to the host of useful applications it can potentially serve.A deep analysis of the concepts associated with this domain reveals that the two main problems that are to be tackled here are throughput enhancement and network security improvement.The present article takes on one of these two issues namely the throughput enhancement.For the purpose of improving network productivity,a hybrid clustering based packet propagation protocol has been proposed.The protocol makes use of not only clustering mechanisms of machine learning but also utilizes the traditional forwarding function approach to arrive at an optimum model.The result of the simulation is a novel transmission protocol which significantly enhances network productivity and increases throughput value.
基金Support by the National High Technology Research and Development Program of China(No.2012AA120802)National Natural Science Foundation of China(No.61771186)+2 种基金Postdoctoral Research Project of Heilongjiang Province(No.LBH-Q15121)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017125)Postgraduate Innovation Research Project of Heilongjiang University(No.YJSCX2018-051HLJU)
文摘Heterogeneous wireless sensor network( HWSN) is composed of different functional nodes and is widely applied. With the deployment in hostile environment,the secure problem of HWSN is of great importance; moreover,it becomes complex due to the mutual characteristics of sensor nodes in HWSN. In order to enhance the network security,an asymmetric key pre-distributed management scheme for HWSN is proposed combining with authentication process to further ensure the network security; meanwhile,an effective authentication method for newly added nodes is presented. Simulation result indicates that the proposed scheme can improve the network security while reducing the storage space requirement efficiently.
基金National Natural Science Foundation of China(No.61772018)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)。
文摘Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.