期刊文献+
共找到194篇文章
< 1 2 10 >
每页显示 20 50 100
HybridGAD: Identification of AI-Generated Radiology Abstracts Based on a Novel Hybrid Model with Attention Mechanism
1
作者 TugbaÇelikten Aytug Onan 《Computers, Materials & Continua》 SCIE EI 2024年第8期3351-3377,共27页
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a... Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications. 展开更多
关键词 Generative artificial intelligence AI-generated text detection attention mechanism hybrid model for text classification
下载PDF
Posture Detection of Heart Disease Using Multi-Head Attention Vision Hybrid(MHAVH)Model
2
作者 Hina Naz Zuping Zhang +3 位作者 Mohammed Al-Habib Fuad A.Awwad Emad A.A.Ismail Zaid Ali Khan 《Computers, Materials & Continua》 SCIE EI 2024年第5期2673-2696,共24页
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ... Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications. 展开更多
关键词 Image analysis posture of heart attack(PHA)detection hybrid features VGG-16 ResNet-50 vision transformer advance multi-head attention layer
下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:2
3
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
结合Hybrid Attention机制和BiLSTM-CRF的汉语否定语义表示及标注 被引量:2
4
作者 李晋荣 吕国英 +2 位作者 李茹 柴清华 王超 《计算机工程与应用》 CSCD 北大核心 2023年第9期167-175,共9页
阅读理解中否定是一种复杂的语言现象,其往往会反转情感或态度的极性。因此,正确分析否定语义对语篇理解具有重要意义。现有否定语义分析方法存在两个问题:第一,研究的否定词较少达不到应用目的;第二,目前汉语否定语义标注只是标注整个... 阅读理解中否定是一种复杂的语言现象,其往往会反转情感或态度的极性。因此,正确分析否定语义对语篇理解具有重要意义。现有否定语义分析方法存在两个问题:第一,研究的否定词较少达不到应用目的;第二,目前汉语否定语义标注只是标注整个句子,这无法明确否定语义。针对该问题提出基于汉语框架语义知识库(Chinese FrameNet)进行否定语义角色标注方法。在框架语义学理论指导下结合汉语否定语义特征对已由FrameNet继承的否定框架重新构建;为了解决捕捉长距离信息以及句法特征问题,提出一种基于Hybrid Attention机制的BiLSTMCRF语义角色标注模型,其中,Hybrid Attention机制层将局部注意与全局注意结合准确表示句子中的否定语义,BiLSTM网络层自动学习并提取语句上下文信息,CRF层预测最优否定语义角色标签。经过比对验证,该模型能够有效提取出含有否定语义信息,在否定语义框架数据集上F1值达到89.82%。 展开更多
关键词 汉语框架语义知识库 语义角色标注 否定框架 双向长短期记忆网络 混合注意力机制
下载PDF
EEG Emotion Recognition Using an Attention Mechanism Based on an Optimized Hybrid Model 被引量:2
5
作者 Huiping Jiang Demeng Wu +2 位作者 Xingqun Tang Zhongjie Li Wenbo Wu 《Computers, Materials & Continua》 SCIE EI 2022年第11期2697-2712,共16页
Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these... Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these non-physical signals are valid and reliable in practical applications.Electroencephalogram(EEG)signals are more successful than other signal recognition methods in recognizing these characteristics in real-time since they are difficult to camouflage.Although EEG signals are commonly used in current emotional recognition research,the accuracy is low when using traditional methods.Therefore,this study presented an optimized hybrid pattern with an attention mechanism(FFT_CLA)for EEG emotional recognition.First,the EEG signal was processed via the fast fourier transform(FFT),after which the convolutional neural network(CNN),long short-term memory(LSTM),and CNN-LSTM-attention(CLA)methods were used to extract and classify the EEG features.Finally,the experiments compared and analyzed the recognition results obtained via three DEAP dataset models,namely FFT_CNN,FFT_LSTM,and FFT_CLA.The final experimental results indicated that the recognition rates of the FFT_CNN,FFT_LSTM,and FFT_CLA models within the DEAP dataset were 87.39%,88.30%,and 92.38%,respectively.The FFT_CLA model improved the accuracy of EEG emotion recognition and used the attention mechanism to address the often-ignored importance of different channels and samples when extracting EEG features. 展开更多
关键词 Emotion recognition EEG signal optimized hybrid model attention mechanism
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
6
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 Short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
7
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
下载PDF
Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
8
作者 Ahmad Yahiya Ahmad Bani Ahmad Jafar Alzubi +3 位作者 Sophers James Vincent Omollo Nyangaresi Chanthirasekaran Kutralakani Anguraju Krishnan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4791-4812,共22页
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e... In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach. 展开更多
关键词 Human action recognition multi-modal sensor data and signals adaptive hybrid deep attentive network enhanced archerfish hunting optimizer 1D convolutional neural network gated recurrent units
下载PDF
Multimodal Sentiment Analysis Using BiGRU and Attention-Based Hybrid Fusion Strategy 被引量:1
9
作者 Zhizhong Liu Bin Zhou +1 位作者 Lingqiang Meng Guangyu Huang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1963-1981,共19页
Recently,multimodal sentiment analysis has increasingly attracted attention with the popularity of complementary data streams,which has great potential to surpass unimodal sentiment analysis.One challenge of multimoda... Recently,multimodal sentiment analysis has increasingly attracted attention with the popularity of complementary data streams,which has great potential to surpass unimodal sentiment analysis.One challenge of multimodal sentiment analysis is how to design an efficient multimodal feature fusion strategy.Unfortunately,existing work always considers feature-level fusion or decision-level fusion,and few research works focus on hybrid fusion strategies that contain feature-level fusion and decision-level fusion.To improve the performance of multimodal sentiment analysis,we present a novel multimodal sentiment analysis model using BiGRU and attention-based hybrid fusion strategy(BAHFS).Firstly,we apply BiGRU to learn the unimodal features of text,audio and video.Then we fuse the unimodal features into bimodal features using the bimodal attention fusion module.Next,BAHFS feeds the unimodal features and bimodal features into the trimodal attention fusion module and the trimodal concatenation fusion module simultaneously to get two sets of trimodal features.Finally,BAHFS makes a classification with the two sets of trimodal features respectively and gets the final analysis results with decision-level fusion.Based on the CMU-MOSI and CMU-MOSEI datasets,extensive experiments have been carried out to verify BAHFS’s superiority. 展开更多
关键词 Multimdoal sentiment analysis BiGRU attention mechanism features-level fusion hybrid fusion strategy
下载PDF
基于改进混合CTC/attention架构的端到端普通话语音识别 被引量:6
10
作者 杨鸿武 周刚 《西北师范大学学报(自然科学版)》 CAS 北大核心 2019年第3期48-53,共6页
端到端的语音识别通过用单个深度网络架构表示复杂模块,减少了构建语音识别系统的难度.文中对传统的混合链接时序分类(Connectionist temporal classification, CTC)模型和基于注意力机制(Attention-based)模型的端到端语音识别架构进... 端到端的语音识别通过用单个深度网络架构表示复杂模块,减少了构建语音识别系统的难度.文中对传统的混合链接时序分类(Connectionist temporal classification, CTC)模型和基于注意力机制(Attention-based)模型的端到端语音识别架构进行了改进,通过引入动态调整参数对CTC模型和基于注意力机制模型进行线性插值,从而实现混合架构的端到端语音识别.将改进后的方法应用在中文普通话语音识别中,选择带投影层的双向长短时记忆网络(Bidirectional long short-term memory projection, BLSTMP)作为编码器网络模型,声学特征选取80维的梅尔尺度滤波器组系数和基频共83维特征.实验结果表明,与传统的端到端语音识别方法比较,文中方法在普通话语音识别上能够降低3.8%的词错误率. 展开更多
关键词 语音识别 链接时序分类 注意力机制 混合CTC/attention 端到端系统
下载PDF
基于CNN-BIGRU-ATTENTION的短期电力负荷预测 被引量:15
11
作者 方娜 余俊杰 +1 位作者 李俊晓 万畅 《计算机仿真》 北大核心 2022年第2期40-44,82,共6页
电价的实时波动,会对负荷预测精度产生一定影响,增加预测的复杂性。针对这一问题,本文构建基于注意力(ATTENTION)机制的卷积神经网络(CNN)和双向门控循环单元(BIGRU)混合模型对短期电力负荷进行预测。首先用CNN对负荷及电价数据特征进... 电价的实时波动,会对负荷预测精度产生一定影响,增加预测的复杂性。针对这一问题,本文构建基于注意力(ATTENTION)机制的卷积神经网络(CNN)和双向门控循环单元(BIGRU)混合模型对短期电力负荷进行预测。首先用CNN对负荷及电价数据特征进行抽取;其次,利用BIGRU对潜藏的时序规律进行提取;最后结合ATTENTION机制,突出关键特征。仿真结果表明,与BP网络、CNN-GRU、CNN-BIGRU和CNN-GRU-ATTENTION混合模型的预测结果相比,上述模型具有更高的预测精度,是一种有效的短期负荷预测方法。 展开更多
关键词 短期负荷预测 注意力机制 卷积神经网络 双向门控循环单元 混合模型
下载PDF
基于HDCNN-BIGRU-Attention油田措施效果预测模型 被引量:1
12
作者 张强 李志溢 邓彬 《吉林大学学报(信息科学版)》 CAS 2023年第4期631-638,共8页
为预测油田增油控水措施效果中月产油量与含水量,提出一种基于混合空洞卷积神经网络(HDCNN:Hybrid Dilated Convolutional Neural Network)-BIGRU-Attention的措施效果预测模型。模型通过HDCNN,提取生产数据多尺度全局特征;针对措施生... 为预测油田增油控水措施效果中月产油量与含水量,提出一种基于混合空洞卷积神经网络(HDCNN:Hybrid Dilated Convolutional Neural Network)-BIGRU-Attention的措施效果预测模型。模型通过HDCNN,提取生产数据多尺度全局特征;针对措施生产数据时序性较强与波动性较大的特点,利用双向门控循环单元(BIGRU:Bidirectional Gated Recurrent Unit)充分挖掘数据间长期依赖关系,提高时序信息利用率与学习效果;引入缩放点积注意力模块(Attention),为重要信息赋予较高权重并不断调整参数使模型始终关注与预测目标相关性较大的特征。为验证模型的有效性,将LSTM(Long Short-Term Memory)、CNN(Convolutional Neural Network)-LSTM以及LSTM-Attention作为实验对比,结果表明该模型具有更低的预测误差与更好的泛化能力。 展开更多
关键词 油田措施效果预测 双向门控循环单元 混合空洞卷积神经网络 缩放点积注意力机制
下载PDF
混合CTC/attention架构端到端带口音普通话识别 被引量:11
13
作者 杨威 胡燕 《计算机应用研究》 CSCD 北大核心 2021年第3期755-759,共5页
针对普通话语音识别任务中的多口音识别问题,提出了链接时序主义(connectionist temporal classification,CTC)和多头注意力(multi-head attention)的混合端到端模型,同时采用多目标训练和联合解码的方法。实验分析发现随着混合架构中... 针对普通话语音识别任务中的多口音识别问题,提出了链接时序主义(connectionist temporal classification,CTC)和多头注意力(multi-head attention)的混合端到端模型,同时采用多目标训练和联合解码的方法。实验分析发现随着混合架构中链接时序主义权重的降低和编码器层数的加深,混合模型在带口音的数据集上表现出了更好的学习能力,同时训练一个深度达到48层的编码器—解码器架构的网络,生成模型的表现超过之前所有端到端模型,在数据堂开源的200 h带口音数据集上达到了5.6%字错率和26.2%句错率。实验证明了提出的端到端模型超过一般端到端模型的识别率,在解决带口音的普通话识别上有一定的先进性。 展开更多
关键词 口音 混合CTC/attention的端到端模型 多头注意力 链接时序主义 语音识别
下载PDF
Liver Tumor Segmentation Based on Multi-Scale and Self-Attention Mechanism 被引量:1
14
作者 Fufang Li Manlin Luo +2 位作者 Ming Hu Guobin Wang Yan Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2835-2850,共16页
Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and sus... Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and susceptible to subjective errors.To address the aforementioned issues,we propose an automatic segmentation model for liver and tumors called Res2Swin Unet,which is based on the Unet architecture.The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation,respectively.Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections,while Swin Transformer captures long-range dependencies and models the input globally.And the model uses deep supervision and a hybrid loss function for faster convergence.On the LiTS2017 dataset,it achieves better segmentation performance than other models,with an average Dice coefficient of 97.0%for liver segmentation and 81.2%for tumor segmentation. 展开更多
关键词 Liver and tumor segmentation unet attention gate swin transformer deep supervision hybrid loss function
下载PDF
基于CNNCIFG-Attention模型的文本情感分类 被引量:1
15
作者 李辉 王一丞 《电子科技》 2022年第2期46-51,共6页
神经网络在处理中文文本情感分类任务时,文本显著特征提取能力较弱,学习速率也相对缓慢。针对这一问题,文中提出一种基于注意力机制的混合网络模型。首先对文本语料进行预处理,利用传统的卷积神经网络对样本向量的局部信息进行特征提取... 神经网络在处理中文文本情感分类任务时,文本显著特征提取能力较弱,学习速率也相对缓慢。针对这一问题,文中提出一种基于注意力机制的混合网络模型。首先对文本语料进行预处理,利用传统的卷积神经网络对样本向量的局部信息进行特征提取,并将其输入耦合输入和遗忘门网络模型,用以学习前后词句之间的联系。随后,再加入注意力机制层,对深层次文本信息进行权重分配,提高重要信息对文本情感分类的影响强度。最后,将所提出的混合网络模型在京东商品评论集上进行测试。测试结果显示,新方法的准确率达到了92.13%,F-Score数值为92.06%,证明了CNNCIFG-Attention模型的可行性。 展开更多
关键词 情感分类 混合网络模型 卷积神经网络 特征提取 耦合输入和遗忘门网络 注意力机制 权重分配 准确率 F-Score数值
下载PDF
基于BiLSTM-Attention混合神经网络的心律失常预测
16
作者 杜丛强 崔昊 《中国医疗设备》 2023年第11期67-72,共6页
目的探讨BiLSTM-Attention混合神经网络模型在心律失常预测中的应用价值。方法选取中国心血管疾病数据库27036条心电图(Electrocardiogram,ECG)数据,按照8∶1∶1的比例划分为训练集、验证集和测试集,采用中值滤波法与小波变换阈值法对原... 目的探讨BiLSTM-Attention混合神经网络模型在心律失常预测中的应用价值。方法选取中国心血管疾病数据库27036条心电图(Electrocardiogram,ECG)数据,按照8∶1∶1的比例划分为训练集、验证集和测试集,采用中值滤波法与小波变换阈值法对原始ECG数据进行降噪预处理,采用BiLSTM对数据进行特征学习,融合注意力机制分配注意力权重,构建BiLSTM-Attention模型进行心律失常分类预测。将BiLSTM-Attention模型与长短期记忆网络(Long Short-Term Memory,LSTM)、LSTM-Attention和BiLSTM模型进行对比,采用F1分数和曲线下面积(Area Under Curve,AUC)对模型进行评价。结果BiLSTM-Attention模型总体的F1分数为0.799,心房颤动、一度房室传导阻滞、窦性心律失常、窦性心律均获得了较高的F1分数,分别为0.955、0.862、0.954和0.917,9类心律失常的AUC均大于0.87。结论BiLSTM-Attention心律失常分类模型具备较强的分类能力,对部分心律失常有较强的识别能力,经训练后能更好地辅助临床进行心律失常诊断,具备一定的实用价值。 展开更多
关键词 心律失常 BiLSTM-attention 注意力机制 混合神经网络
下载PDF
A Novel Hybrid Architecture for Superior IoT Threat Detection through Real IoT Environments
17
作者 Bassam Mohammad Elzaghmouri Yosef Hasan Fayez Jbara +7 位作者 Said Elaiwat Nisreen Innab Ahmed Abdelgader Fadol Osman Mohammed Awad Mohammed Ataelfadiel Farah H.Zawaideh Mouiad Fadeil Alawneh Asef Al-Khateeb Marwan Abu-Zanona 《Computers, Materials & Continua》 SCIE EI 2024年第11期2299-2316,共18页
As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an ... As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology. 展开更多
关键词 A hybrid deep learning model IoT threat detection real IoT environments CYBERSECURITY attention mechanism
下载PDF
A hybrid attention model based on first-order statistical features for smoke recognition
18
作者 GUO Nan LIU JiaHui +2 位作者 DI KeXin GU Ke QIAO JunFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第3期809-822,共14页
Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffe... Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffer from problems like the variability of the features, complexity of scenarios, interference from background, changeable weather conditions as well as image quality problems, identifying smoke and fire accurately and promptly from a given image still remains a substantial challenge. Automatically learning the features of smoke images by CNNs has improved the target recognition ability compared to traditional approaches,nonetheless, convolutions and pooling operations in CNNs may cause severe information loss which may lead to misjudgment.To tackle the above problems, this paper proposed a hybrid attention model based on the characteristics of smoke images. This model adopted multiple optimized attention mechanism in several stages to quickly and precisely capture the important features,achieving state-of-the-art performance on smoke and fire recognition in terms of accuracy and speed. Our proposed module mainly consists of two stages: pooling and attention. In the first stage, we conducted several newly proposed first-order pooling methods. Through traversing the data space in a larger scope, features are better reserved, thus constructing a more intact feature space of smoke and fire in an image. In the second stage, feature maps are aggregated together to perform channel and spatial attention. The channel and spatial dependencies allow us to quickly catch the important features presented in an image. By fully exploring the feature space and prominent salient features, characteristics of smoke and fire are better presented so as to obtain better smoke and fire detection results. Experiments have been conducted on public smoke detection dataset and new proposed fine-grained smoke and fire detection database. Experimental results revealed that the proposed method outperformed popular deep CNNs and existing prevalent attention models for smoke and fire detection problems. 展开更多
关键词 hybrid attention first-order pooling smoke and fire detection deep convolutional neural networks
原文传递
Towards Effective Author Name Disambiguation by Hybrid Attention
19
作者 Qian Zhou Wei Chen +4 位作者 Peng-Peng Zhao An Liu Jia-Jie Xu Jian-Feng Qu Lei Zhao 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第4期929-950,共22页
Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic publications.To tackle the AND problem,existing studie... Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic publications.To tackle the AND problem,existing studies have proposed various approaches based on different types of information,such as raw document features(e.g.,co-authors,titles,and keywords),the fusion feature(e.g.,a hybrid publication embedding based on multiple raw document features),the local structural information(e.g.,a publication's neighborhood information on a graph),and the global structural information(e.g.,interactive information between a node and others on a graph).However,there has been no work taking all the above-mentioned information into account and taking full advantage of the contributions of each raw document feature for the AND problem so far.To fill the gap,we propose a novel framework named EAND(Towards Effective Author Name Disambiguation by Hybrid Attention).Specifically,we design a novel feature extraction model,which consists of three hybrid attention mechanism layers,to extract key information from the global structural information and the local structural information that are generated from six similarity graphs constructed based on different similarity coefficients,raw document features,and the fusion feature.Each hybrid attention mechanism layer contains three key modules:a local structural perception,a global structural perception,and a feature extractor.Additionally,the mean absolute error function in the joint loss function is used to introduce the structural information loss of the vector space.Experimental results on two real-world datasets demonstrate that EAND achieves superior performance,outperforming state-of-the-art methods by at least+2.74%in terms of the micro-F1 score and+3.31%in terms of the macro-F1 score. 展开更多
关键词 author name disambiguation multiple-feature information hybrid attention pruning strategy structural information loss of vector space
原文传递
基于交叉注意力的多任务交通场景检测模型 被引量:1
20
作者 牛国臣 王晓楠 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1491-1499,共9页
感知是自动驾驶的基础和关键,但大多数单个模型无法同时完成交通目标、可行驶区域和车道线等多项检测任务。提出一种基于交叉注意力的多任务交通场景检测模型,可以同时检测交通目标、可行驶区域和车道线。使用编解码网络提取初始特征,... 感知是自动驾驶的基础和关键,但大多数单个模型无法同时完成交通目标、可行驶区域和车道线等多项检测任务。提出一种基于交叉注意力的多任务交通场景检测模型,可以同时检测交通目标、可行驶区域和车道线。使用编解码网络提取初始特征,利用混合空洞卷积对初始特征进行强化,并通过交叉注意力模块得到分割和检测特征图。在分割特征图上进行语义分割,在检测特征图上进行目标检测。实验结果表明:在具有挑战性的BDD100K数据集中,所提模型在任务精度和总体计算效率方面优于其他多任务模型。 展开更多
关键词 注意力机制 多任务学习 自动驾驶 目标检测 混合空洞卷积
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部