Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a...Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.展开更多
Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may ...Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.展开更多
Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these...Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these non-physical signals are valid and reliable in practical applications.Electroencephalogram(EEG)signals are more successful than other signal recognition methods in recognizing these characteristics in real-time since they are difficult to camouflage.Although EEG signals are commonly used in current emotional recognition research,the accuracy is low when using traditional methods.Therefore,this study presented an optimized hybrid pattern with an attention mechanism(FFT_CLA)for EEG emotional recognition.First,the EEG signal was processed via the fast fourier transform(FFT),after which the convolutional neural network(CNN),long short-term memory(LSTM),and CNN-LSTM-attention(CLA)methods were used to extract and classify the EEG features.Finally,the experiments compared and analyzed the recognition results obtained via three DEAP dataset models,namely FFT_CNN,FFT_LSTM,and FFT_CLA.The final experimental results indicated that the recognition rates of the FFT_CNN,FFT_LSTM,and FFT_CLA models within the DEAP dataset were 87.39%,88.30%,and 92.38%,respectively.The FFT_CLA model improved the accuracy of EEG emotion recognition and used the attention mechanism to address the often-ignored importance of different channels and samples when extracting EEG features.展开更多
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s...Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.展开更多
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a...Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
Recently,multimodal sentiment analysis has increasingly attracted attention with the popularity of complementary data streams,which has great potential to surpass unimodal sentiment analysis.One challenge of multimoda...Recently,multimodal sentiment analysis has increasingly attracted attention with the popularity of complementary data streams,which has great potential to surpass unimodal sentiment analysis.One challenge of multimodal sentiment analysis is how to design an efficient multimodal feature fusion strategy.Unfortunately,existing work always considers feature-level fusion or decision-level fusion,and few research works focus on hybrid fusion strategies that contain feature-level fusion and decision-level fusion.To improve the performance of multimodal sentiment analysis,we present a novel multimodal sentiment analysis model using BiGRU and attention-based hybrid fusion strategy(BAHFS).Firstly,we apply BiGRU to learn the unimodal features of text,audio and video.Then we fuse the unimodal features into bimodal features using the bimodal attention fusion module.Next,BAHFS feeds the unimodal features and bimodal features into the trimodal attention fusion module and the trimodal concatenation fusion module simultaneously to get two sets of trimodal features.Finally,BAHFS makes a classification with the two sets of trimodal features respectively and gets the final analysis results with decision-level fusion.Based on the CMU-MOSI and CMU-MOSEI datasets,extensive experiments have been carried out to verify BAHFS’s superiority.展开更多
Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and sus...Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and susceptible to subjective errors.To address the aforementioned issues,we propose an automatic segmentation model for liver and tumors called Res2Swin Unet,which is based on the Unet architecture.The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation,respectively.Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections,while Swin Transformer captures long-range dependencies and models the input globally.And the model uses deep supervision and a hybrid loss function for faster convergence.On the LiTS2017 dataset,it achieves better segmentation performance than other models,with an average Dice coefficient of 97.0%for liver segmentation and 81.2%for tumor segmentation.展开更多
目的探讨BiLSTM-Attention混合神经网络模型在心律失常预测中的应用价值。方法选取中国心血管疾病数据库27036条心电图(Electrocardiogram,ECG)数据,按照8∶1∶1的比例划分为训练集、验证集和测试集,采用中值滤波法与小波变换阈值法对原...目的探讨BiLSTM-Attention混合神经网络模型在心律失常预测中的应用价值。方法选取中国心血管疾病数据库27036条心电图(Electrocardiogram,ECG)数据,按照8∶1∶1的比例划分为训练集、验证集和测试集,采用中值滤波法与小波变换阈值法对原始ECG数据进行降噪预处理,采用BiLSTM对数据进行特征学习,融合注意力机制分配注意力权重,构建BiLSTM-Attention模型进行心律失常分类预测。将BiLSTM-Attention模型与长短期记忆网络(Long Short-Term Memory,LSTM)、LSTM-Attention和BiLSTM模型进行对比,采用F1分数和曲线下面积(Area Under Curve,AUC)对模型进行评价。结果BiLSTM-Attention模型总体的F1分数为0.799,心房颤动、一度房室传导阻滞、窦性心律失常、窦性心律均获得了较高的F1分数,分别为0.955、0.862、0.954和0.917,9类心律失常的AUC均大于0.87。结论BiLSTM-Attention心律失常分类模型具备较强的分类能力,对部分心律失常有较强的识别能力,经训练后能更好地辅助临床进行心律失常诊断,具备一定的实用价值。展开更多
As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an ...As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.展开更多
Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffe...Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffer from problems like the variability of the features, complexity of scenarios, interference from background, changeable weather conditions as well as image quality problems, identifying smoke and fire accurately and promptly from a given image still remains a substantial challenge. Automatically learning the features of smoke images by CNNs has improved the target recognition ability compared to traditional approaches,nonetheless, convolutions and pooling operations in CNNs may cause severe information loss which may lead to misjudgment.To tackle the above problems, this paper proposed a hybrid attention model based on the characteristics of smoke images. This model adopted multiple optimized attention mechanism in several stages to quickly and precisely capture the important features,achieving state-of-the-art performance on smoke and fire recognition in terms of accuracy and speed. Our proposed module mainly consists of two stages: pooling and attention. In the first stage, we conducted several newly proposed first-order pooling methods. Through traversing the data space in a larger scope, features are better reserved, thus constructing a more intact feature space of smoke and fire in an image. In the second stage, feature maps are aggregated together to perform channel and spatial attention. The channel and spatial dependencies allow us to quickly catch the important features presented in an image. By fully exploring the feature space and prominent salient features, characteristics of smoke and fire are better presented so as to obtain better smoke and fire detection results. Experiments have been conducted on public smoke detection dataset and new proposed fine-grained smoke and fire detection database. Experimental results revealed that the proposed method outperformed popular deep CNNs and existing prevalent attention models for smoke and fire detection problems.展开更多
Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic publications.To tackle the AND problem,existing studie...Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic publications.To tackle the AND problem,existing studies have proposed various approaches based on different types of information,such as raw document features(e.g.,co-authors,titles,and keywords),the fusion feature(e.g.,a hybrid publication embedding based on multiple raw document features),the local structural information(e.g.,a publication's neighborhood information on a graph),and the global structural information(e.g.,interactive information between a node and others on a graph).However,there has been no work taking all the above-mentioned information into account and taking full advantage of the contributions of each raw document feature for the AND problem so far.To fill the gap,we propose a novel framework named EAND(Towards Effective Author Name Disambiguation by Hybrid Attention).Specifically,we design a novel feature extraction model,which consists of three hybrid attention mechanism layers,to extract key information from the global structural information and the local structural information that are generated from six similarity graphs constructed based on different similarity coefficients,raw document features,and the fusion feature.Each hybrid attention mechanism layer contains three key modules:a local structural perception,a global structural perception,and a feature extractor.Additionally,the mean absolute error function in the joint loss function is used to introduce the structural information loss of the vector space.Experimental results on two real-world datasets demonstrate that EAND achieves superior performance,outperforming state-of-the-art methods by at least+2.74%in terms of the micro-F1 score and+3.31%in terms of the macro-F1 score.展开更多
文摘Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.
基金Researchers Supporting Project Number(RSPD2024R576),King Saud University,Riyadh,Saudi Arabia。
文摘Cardiovascular disease is the leading cause of death globally.This disease causes loss of heart muscles and is also responsible for the death of heart cells,sometimes damaging their functionality.A person’s life may depend on receiving timely assistance as soon as possible.Thus,minimizing the death ratio can be achieved by early detection of heart attack(HA)symptoms.In the United States alone,an estimated 610,000 people die fromheart attacks each year,accounting for one in every four fatalities.However,by identifying and reporting heart attack symptoms early on,it is possible to reduce damage and save many lives significantly.Our objective is to devise an algorithm aimed at helping individuals,particularly elderly individuals living independently,to safeguard their lives.To address these challenges,we employ deep learning techniques.We have utilized a vision transformer(ViT)to address this problem.However,it has a significant overhead cost due to its memory consumption and computational complexity because of scaling dot-product attention.Also,since transformer performance typically relies on large-scale or adequate data,adapting ViT for smaller datasets is more challenging.In response,we propose a three-in-one steam model,theMulti-Head Attention Vision Hybrid(MHAVH).Thismodel integrates a real-time posture recognition framework to identify chest pain postures indicative of heart attacks using transfer learning techniques,such as ResNet-50 and VGG-16,renowned for their robust feature extraction capabilities.By incorporatingmultiple heads into the vision transformer to generate additional metrics and enhance heart-detection capabilities,we leverage a 2019 posture-based dataset comprising RGB images,a novel creation by the author that marks the first dataset tailored for posture-based heart attack detection.Given the limited online data availability,we segmented this dataset into gender categories(male and female)and conducted testing on both segmented and original datasets.The training accuracy of our model reached an impressive 99.77%.Upon testing,the accuracy for male and female datasets was recorded at 92.87%and 75.47%,respectively.The combined dataset accuracy is 93.96%,showcasing a commendable performance overall.Our proposed approach demonstrates versatility in accommodating small and large datasets,offering promising prospects for real-world applications.
基金This work was supported by the National Nature Science Foundation of China(No.61503423,H.P.Jiang).The URL is http://www.nsfc.gov.cn/.
文摘Emotions serve various functions.The traditional emotion recognition methods are based primarily on readily accessible facial expressions,gestures,and voice signals.However,it is often challenging to ensure that these non-physical signals are valid and reliable in practical applications.Electroencephalogram(EEG)signals are more successful than other signal recognition methods in recognizing these characteristics in real-time since they are difficult to camouflage.Although EEG signals are commonly used in current emotional recognition research,the accuracy is low when using traditional methods.Therefore,this study presented an optimized hybrid pattern with an attention mechanism(FFT_CLA)for EEG emotional recognition.First,the EEG signal was processed via the fast fourier transform(FFT),after which the convolutional neural network(CNN),long short-term memory(LSTM),and CNN-LSTM-attention(CLA)methods were used to extract and classify the EEG features.Finally,the experiments compared and analyzed the recognition results obtained via three DEAP dataset models,namely FFT_CNN,FFT_LSTM,and FFT_CLA.The final experimental results indicated that the recognition rates of the FFT_CNN,FFT_LSTM,and FFT_CLA models within the DEAP dataset were 87.39%,88.30%,and 92.38%,respectively.The FFT_CLA model improved the accuracy of EEG emotion recognition and used the attention mechanism to address the often-ignored importance of different channels and samples when extracting EEG features.
基金the Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.
基金funded by the National Natural Foundation of China under Grant No.61172167the Science Fund Project of Heilongjiang Province(LH2020F035).
文摘Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
基金funded by the National Natural Science Foundation of China (Grant No.61872126,No.62273290)supported by the Key project of Natural Science Foundation of Shandong Province (Grant No.ZR2020KF019).
文摘Recently,multimodal sentiment analysis has increasingly attracted attention with the popularity of complementary data streams,which has great potential to surpass unimodal sentiment analysis.One challenge of multimodal sentiment analysis is how to design an efficient multimodal feature fusion strategy.Unfortunately,existing work always considers feature-level fusion or decision-level fusion,and few research works focus on hybrid fusion strategies that contain feature-level fusion and decision-level fusion.To improve the performance of multimodal sentiment analysis,we present a novel multimodal sentiment analysis model using BiGRU and attention-based hybrid fusion strategy(BAHFS).Firstly,we apply BiGRU to learn the unimodal features of text,audio and video.Then we fuse the unimodal features into bimodal features using the bimodal attention fusion module.Next,BAHFS feeds the unimodal features and bimodal features into the trimodal attention fusion module and the trimodal concatenation fusion module simultaneously to get two sets of trimodal features.Finally,BAHFS makes a classification with the two sets of trimodal features respectively and gets the final analysis results with decision-level fusion.Based on the CMU-MOSI and CMU-MOSEI datasets,extensive experiments have been carried out to verify BAHFS’s superiority.
文摘Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and susceptible to subjective errors.To address the aforementioned issues,we propose an automatic segmentation model for liver and tumors called Res2Swin Unet,which is based on the Unet architecture.The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation,respectively.Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections,while Swin Transformer captures long-range dependencies and models the input globally.And the model uses deep supervision and a hybrid loss function for faster convergence.On the LiTS2017 dataset,it achieves better segmentation performance than other models,with an average Dice coefficient of 97.0%for liver segmentation and 81.2%for tumor segmentation.
文摘目的探讨BiLSTM-Attention混合神经网络模型在心律失常预测中的应用价值。方法选取中国心血管疾病数据库27036条心电图(Electrocardiogram,ECG)数据,按照8∶1∶1的比例划分为训练集、验证集和测试集,采用中值滤波法与小波变换阈值法对原始ECG数据进行降噪预处理,采用BiLSTM对数据进行特征学习,融合注意力机制分配注意力权重,构建BiLSTM-Attention模型进行心律失常分类预测。将BiLSTM-Attention模型与长短期记忆网络(Long Short-Term Memory,LSTM)、LSTM-Attention和BiLSTM模型进行对比,采用F1分数和曲线下面积(Area Under Curve,AUC)对模型进行评价。结果BiLSTM-Attention模型总体的F1分数为0.799,心房颤动、一度房室传导阻滞、窦性心律失常、窦性心律均获得了较高的F1分数,分别为0.955、0.862、0.954和0.917,9类心律失常的AUC均大于0.87。结论BiLSTM-Attention心律失常分类模型具备较强的分类能力,对部分心律失常有较强的识别能力,经训练后能更好地辅助临床进行心律失常诊断,具备一定的实用价值。
基金funding from Deanship of Scientific Research in King Faisal University with Grant Number KFU241648.
文摘As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology.
基金supported by the National Key Research and Development Program of China(Grant No. 2021ZD0112302)the National Natural Science Foundation of China(Grant Nos. 62076013, 62021003, 61890935)CAAI-Huawei MindSpore Open Fund(Grant No. CAAIXSJLJJ-2021-016A)。
文摘Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffer from problems like the variability of the features, complexity of scenarios, interference from background, changeable weather conditions as well as image quality problems, identifying smoke and fire accurately and promptly from a given image still remains a substantial challenge. Automatically learning the features of smoke images by CNNs has improved the target recognition ability compared to traditional approaches,nonetheless, convolutions and pooling operations in CNNs may cause severe information loss which may lead to misjudgment.To tackle the above problems, this paper proposed a hybrid attention model based on the characteristics of smoke images. This model adopted multiple optimized attention mechanism in several stages to quickly and precisely capture the important features,achieving state-of-the-art performance on smoke and fire recognition in terms of accuracy and speed. Our proposed module mainly consists of two stages: pooling and attention. In the first stage, we conducted several newly proposed first-order pooling methods. Through traversing the data space in a larger scope, features are better reserved, thus constructing a more intact feature space of smoke and fire in an image. In the second stage, feature maps are aggregated together to perform channel and spatial attention. The channel and spatial dependencies allow us to quickly catch the important features presented in an image. By fully exploring the feature space and prominent salient features, characteristics of smoke and fire are better presented so as to obtain better smoke and fire detection results. Experiments have been conducted on public smoke detection dataset and new proposed fine-grained smoke and fire detection database. Experimental results revealed that the proposed method outperformed popular deep CNNs and existing prevalent attention models for smoke and fire detection problems.
基金supported by the Major Program of the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant Nos.19KJA610002 and 19KJB520050the National Natural Science Foundation of China under Grant No.61902270.
文摘Author name disambiguation(AND)is a central task in academic search,which has received more attention recently accompanied by the increase of authors and academic publications.To tackle the AND problem,existing studies have proposed various approaches based on different types of information,such as raw document features(e.g.,co-authors,titles,and keywords),the fusion feature(e.g.,a hybrid publication embedding based on multiple raw document features),the local structural information(e.g.,a publication's neighborhood information on a graph),and the global structural information(e.g.,interactive information between a node and others on a graph).However,there has been no work taking all the above-mentioned information into account and taking full advantage of the contributions of each raw document feature for the AND problem so far.To fill the gap,we propose a novel framework named EAND(Towards Effective Author Name Disambiguation by Hybrid Attention).Specifically,we design a novel feature extraction model,which consists of three hybrid attention mechanism layers,to extract key information from the global structural information and the local structural information that are generated from six similarity graphs constructed based on different similarity coefficients,raw document features,and the fusion feature.Each hybrid attention mechanism layer contains three key modules:a local structural perception,a global structural perception,and a feature extractor.Additionally,the mean absolute error function in the joint loss function is used to introduce the structural information loss of the vector space.Experimental results on two real-world datasets demonstrate that EAND achieves superior performance,outperforming state-of-the-art methods by at least+2.74%in terms of the micro-F1 score and+3.31%in terms of the macro-F1 score.