The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we inve...The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.展开更多
Based on angular amplitude modulation of orthogonal base vectors in common-path interference method, we propose an interesting type of hybrid vector beams with unprecedented azimuthal polarization gradient and demonst...Based on angular amplitude modulation of orthogonal base vectors in common-path interference method, we propose an interesting type of hybrid vector beams with unprecedented azimuthal polarization gradient and demonstrate in experiment. Geometrically, the configured azimuthal polarization gradient is indicated by intriguing mapping tracks of angular polarization states on Poincaré sphere, more than just conventional circles for previously reported vector beams. Moreover, via tailoring relevant parameters, more special polarization mapping tracks can be handily achieved. More noteworthily, the designed azimuthal polarization gradients are found to be able to induce azimuthally non-uniform orbital angular momentum density, while generally uniform for circle-track cases, immersing in homogenous intensity background whatever base states are. These peculiar features may open alternative routes for new optical effects and applications.展开更多
Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-le...Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.展开更多
基金Project supported by the Youth Innovation Promotion Association CASState Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222)
文摘The perfect hybrid vector vortex beam(PHVVB)with helical phase wavefront structure has aroused significant concern in recent years,as its beam waist does not expand with the topological charge(TC).In this work,we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium,and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields.We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC.Still,the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor.This distinctive quantum coherence phenomenon,demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam,might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303800)the National Natural Science Foundation of China(Grant Nos.11634010,61675168,91850118,11774289,and 11804277)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.3102019JC008)the Basic Research Plan of Natural Science in Shaanxi Province,China(Grant Nos.2018JM1057 and 2019JM-583).
文摘Based on angular amplitude modulation of orthogonal base vectors in common-path interference method, we propose an interesting type of hybrid vector beams with unprecedented azimuthal polarization gradient and demonstrate in experiment. Geometrically, the configured azimuthal polarization gradient is indicated by intriguing mapping tracks of angular polarization states on Poincaré sphere, more than just conventional circles for previously reported vector beams. Moreover, via tailoring relevant parameters, more special polarization mapping tracks can be handily achieved. More noteworthily, the designed azimuthal polarization gradients are found to be able to induce azimuthally non-uniform orbital angular momentum density, while generally uniform for circle-track cases, immersing in homogenous intensity background whatever base states are. These peculiar features may open alternative routes for new optical effects and applications.
基金Projects(51605138,U1508210)supported by the National Natural Science Foundation of ChinaProject(BK20160286)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015B30214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.