期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on Absorption and Regeneration Performance of Novel Hybrid Solutions for CO_2 Capture 被引量:1
1
作者 Gao Jie Yin Jun +5 位作者 Zhu Feifei Chen Xin Tong Ming Kang Wanzhong Zhou Yanbo Lu Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期66-72,共7页
Recently, a kind of hybrid solution MEA-methanol shows a better CO_2 capture performance over aqueous MEA solution. However, the vaporization of methanol is the biggest disadvantage that hinders its application, so it... Recently, a kind of hybrid solution MEA-methanol shows a better CO_2 capture performance over aqueous MEA solution. However, the vaporization of methanol is the biggest disadvantage that hinders its application, so it is necessary to minimize the vaporization of methanol during both the absorption and regeneration processes. In this work, two kinds of hybrid solutions were studied and compared with aqueous MEA solution and MEA-methanol solution, including MEA/TEA/methanol solution and MEA/glycerol/methanol solution. The absorption property of MEA/glycerol/methanol solution is better than aqueous MEA solution within a certain period of time and the absorption property of MEA/TEA/methanol solution is too poor to be used in CO_2 capture. By increasing the concentration of TEA and decreasing the concentration of MEA, the absorption rate, CO_2 capture efficiency and absorption capacity all decreased. Upon adding glycerol, the cyclic capacity decreased and the generation temperature increased, and moreover, the density and viscosity also increased considerably. So after adding TEA and glycerol, the CO_2 capture performance of MEAmethanol solvent cannot be improved. 展开更多
关键词 CO2 capture MEA methanol glycerol hybrid solvent
下载PDF
Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO2,and selected organic and metal co-pollutants
2
作者 Andrea A.Rocha Christian Wilde +3 位作者 Zhenzhong Hu Oleg Nepotchatykh Yevgen Nazarenko Parisa A.Ariya 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第7期41-53,共13页
Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide(CO_2) which contribute to climate change and atmospheric pollution... Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide(CO_2) which contribute to climate change and atmospheric pollution.There is a need for green and sustainable solutions to remove air pollutants,as opposed to conventional techniques which can be expensive,consume additional energy and generate further waste.We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces,to remove CO_2,and undesired organic air pollutants using natural particles,while generating oxygen.This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO_2 with a conversion rate of approximately 4%CO_2 per hour,generating a steady supply of oxygen(6 mmol/hr),while nanoparticles effectively remove several undesired organic by-products.We also showed algal waste of the bioreactor can be used for mercury remediation.We estimated the potential CO_2 emissions that could be captured from our new method for three industrial cases in which,coal,oil and natural gas were used.With a 30% carbon capture system,the reduction of CO_2 was estimated to decrease by about 420,000,320,000 and 240,000 metric tonnes,respectively for a typical 500 MW power plant.The cost analysis we conducted showed potential to scale-up,and the entire system is recyclable and sustainable.We further discuss the implications of usage of this complete system,or as individual units,that could provide a hybrid option to existing industrial setups. 展开更多
关键词 Air pollution mitigation Climate change CO_2 capture hybrid system Nanoparticle adsorption interfaces
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部