In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8...In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8/QPSK-OFDM signal for uplink transmission is successfully proposed and experimentally presented in a full-duplex PON based on OFDM system. Here, for the uplink, in order to unit management of the optical line terminal (OLT) and reduce cost, the optical source functioned as the optical subcarrier at optical network units (ONUs) is from OLT in the central station. Moreover, there is an external cavity laser (ECL) with center frequency of 193.2 THz not only employed as optical modulated signal but also acted as LO signal. Our simulation results show that bit error ratio (BER) under hardware detection forward error correction has been successfully gained after 20 km of SSMF transmission. It is observed that the receiver sensitivity of multilevel PSK (M-PSK) is obviously larger than that of the M-QAM in this measurement scheme.展开更多
With the progress of the railway technology, the railway transportation is becoming more efficient, intelligent and faster. High speed trains, as a major part of the railway transportation, are engaged with passenger&...With the progress of the railway technology, the railway transportation is becoming more efficient, intelligent and faster. High speed trains, as a major part of the railway transportation, are engaged with passenger's safety, and therefore the reliability issue is very important in such vital systems. In this paper, a dependable speed controller core based on FPGA has been developed for high speed trains. To improve the reliability and mitigate single upset faults on basic speed controller, this paper proposes a new effective method which is based on hardware redundancy. In the proposed Hybrid Dual Duplex Redundancy(HDDR) method, the original controller is quadruplicated and correct values are voted through the comparator and error detection unit. We have analyzed the proposed system with Reliability, Availability, Mean time to failure and Security(RAMS) theory in order to evaluate the effectiveness of proposed scheme. Theoretical analysis shows that the Mean Time To Failure(MTTF) of the proposed system is 2.5 times better than the traditional Triple Modular Redundancy(TMR). Furthermore, the fault injection experimental results reveal that the capability of tolerating Single Event Upsets(SEUs) in the proposed method increases up to 7.5 times with respect to a regular speed controller.展开更多
Systematic analysis of factors determining efficiency in discrimination of a point substitution (SNP) within specific DNA sequences was carried out in the context of hybridization approach. There are two types of sele...Systematic analysis of factors determining efficiency in discrimination of a point substitution (SNP) within specific DNA sequences was carried out in the context of hybridization approach. There are two types of selectivity that are critical for the rational design of highly specific oligonucleotides probes. The first type is the real selectivity of hybridization (fa) that is the ratio of association degrees of targets with an oligonucleotide probe upon the perfect and imperfect complex formation. This type of selectivity reflects the level of discrimination between matched and mismatched signals, which is determined both by experimental conditions and the thermodynamics of oligonucleotide hybridization. The second parameter characterizing the efficiency of SNP discrimination is the limit selectivity of hybridization, which determines the utmost value of fa at a given temperature. This value can be calculated as the ratio of corresponding equilibrium association constants of perfect and imperfect complex formation determined purely by thermodynamics. We have shown that the fa function is the most reliable characteristic describing the hybridization selectivity. For the analytical system designed to reveal any type of perturbation in DNA (e.g. SNP or modification), there is usually a temperature at which fa has its maximum value. The dependency of the fa maximum on different experimental parameters as well as the structural characteristics of a probe are described in details. The results allowed us to postulate points of principle to rationally design the most selective probes on the basis of oli- gonucleotides or their derivatives.展开更多
How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to t...How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.展开更多
In cognitive radio networks,the jamming attacks,which have the same ability with secondary users(SUs)but access the licensed channels without considering the carrier sense multiple access protocol,can disguise a prima...In cognitive radio networks,the jamming attacks,which have the same ability with secondary users(SUs)but access the licensed channels without considering the carrier sense multiple access protocol,can disguise a primary user(PU)or SU to occupy the licensed channels,thus resulting in failing to access the licensed channels for PUs and SUs.Employing full/half duplex cognitive frequency hopping(CFH),where users sense the occupancy of licensed channels and then dynamically adjust the hopping parameters,can mitigate the hostile jamming.However,due to the explosive growth of serves and data traffic,it is very difficult to significantly increase the anti-jamming results and achieve high capacities with full/half duplex CFH for both PUs and SUs in cognitive radio networks.To achieve efficient anti-jamming and high capacities for PUs and SUs,in this paper we propose the orbital angular momentum(OAM)-based hybrid-duplex CFH scheme,which jointly uses the half-duplex cooperative sensing and full-duplex transmission modes for PUs and SUs in cognitive radio networks.Using the OAM-based hybrid-duplex CFH scheme,PUs and SUs can identify the occupancy of licensed channels with half-duplex fashion,thus significantly reducing the probability of signals jammed.Then,based on the sensing results,the signals are allowed to be transmitted and received by the same time-slots,carrier frequencies,and OAM-modes.The average capacities of PUs and SUs are derived,respectively.Extensively numerical results show that our proposed OAM-based hybrid-duplex CFH scheme can significantly increase the capacities of PUs and SUs in cognitive radio networks under hostile jamming attacks.展开更多
文摘In the context of next-generation optical access networks beyond 10 G, for high SE and flexible dynamic bandwidth allocation (DBA), the scheme of hybrid 64/16/4QAM-OFDM signal for downlink transmission and hybrid 16/8/QPSK-OFDM signal for uplink transmission is successfully proposed and experimentally presented in a full-duplex PON based on OFDM system. Here, for the uplink, in order to unit management of the optical line terminal (OLT) and reduce cost, the optical source functioned as the optical subcarrier at optical network units (ONUs) is from OLT in the central station. Moreover, there is an external cavity laser (ECL) with center frequency of 193.2 THz not only employed as optical modulated signal but also acted as LO signal. Our simulation results show that bit error ratio (BER) under hardware detection forward error correction has been successfully gained after 20 km of SSMF transmission. It is observed that the receiver sensitivity of multilevel PSK (M-PSK) is obviously larger than that of the M-QAM in this measurement scheme.
文摘With the progress of the railway technology, the railway transportation is becoming more efficient, intelligent and faster. High speed trains, as a major part of the railway transportation, are engaged with passenger's safety, and therefore the reliability issue is very important in such vital systems. In this paper, a dependable speed controller core based on FPGA has been developed for high speed trains. To improve the reliability and mitigate single upset faults on basic speed controller, this paper proposes a new effective method which is based on hardware redundancy. In the proposed Hybrid Dual Duplex Redundancy(HDDR) method, the original controller is quadruplicated and correct values are voted through the comparator and error detection unit. We have analyzed the proposed system with Reliability, Availability, Mean time to failure and Security(RAMS) theory in order to evaluate the effectiveness of proposed scheme. Theoretical analysis shows that the Mean Time To Failure(MTTF) of the proposed system is 2.5 times better than the traditional Triple Modular Redundancy(TMR). Furthermore, the fault injection experimental results reveal that the capability of tolerating Single Event Upsets(SEUs) in the proposed method increases up to 7.5 times with respect to a regular speed controller.
文摘Systematic analysis of factors determining efficiency in discrimination of a point substitution (SNP) within specific DNA sequences was carried out in the context of hybridization approach. There are two types of selectivity that are critical for the rational design of highly specific oligonucleotides probes. The first type is the real selectivity of hybridization (fa) that is the ratio of association degrees of targets with an oligonucleotide probe upon the perfect and imperfect complex formation. This type of selectivity reflects the level of discrimination between matched and mismatched signals, which is determined both by experimental conditions and the thermodynamics of oligonucleotide hybridization. The second parameter characterizing the efficiency of SNP discrimination is the limit selectivity of hybridization, which determines the utmost value of fa at a given temperature. This value can be calculated as the ratio of corresponding equilibrium association constants of perfect and imperfect complex formation determined purely by thermodynamics. We have shown that the fa function is the most reliable characteristic describing the hybridization selectivity. For the analytical system designed to reveal any type of perturbation in DNA (e.g. SNP or modification), there is usually a temperature at which fa has its maximum value. The dependency of the fa maximum on different experimental parameters as well as the structural characteristics of a probe are described in details. The results allowed us to postulate points of principle to rationally design the most selective probes on the basis of oli- gonucleotides or their derivatives.
基金supported by the National Natural Science Foundation of China(61671176 61671173)the Fundamental Research Funds for the Center Universities(HIT.MKSTISP.2016 13)
文摘How to obtain accurate channel state information(CSI)at the transmitter with less pilot overhead for frequency division duplexing(FDD) massive multiple-input multiple-output(MIMO)system is a challenging issue due to the large number of antennas. To reduce the overwhelming pilot overhead, a hybrid orthogonal and non-orthogonal pilot distribution at the base station(BS),which is a generalization of the existing pilot distribution scheme,is proposed by exploiting the common sparsity of channel due to the compact antenna arrangement. Then the block sparsity for antennas with hybrid pilot distribution is derived respectively and can be used to obtain channel impulse response. By employing the theoretical analysis of block sparse recovery, the total coherence criterion is proposed to optimize the sensing matrix composed by orthogonal pilots. Due to the huge complexity of optimal pilot acquisition, a genetic algorithm based pilot allocation(GAPA) algorithm is proposed to acquire optimal pilot distribution locations with fast convergence. Furthermore, the Cramer Rao lower bound is derived for non-orthogonal pilot-based channel estimation and can be asymptotically approached by the prior support set, especially when the optimized pilot is employed.
基金This work was supported in part by National Natural Science Foun-dation of China under Grant 61771368Young Elite Scientists Sponsor-ship Program by CAST under Grant 2016QNRC001This article was pre-sented in part at the IEEE/CIC International Conference on Communications in China,2018[1].The associate editor coordinating the review of this paper and approving it for publication was L.Bai。
文摘In cognitive radio networks,the jamming attacks,which have the same ability with secondary users(SUs)but access the licensed channels without considering the carrier sense multiple access protocol,can disguise a primary user(PU)or SU to occupy the licensed channels,thus resulting in failing to access the licensed channels for PUs and SUs.Employing full/half duplex cognitive frequency hopping(CFH),where users sense the occupancy of licensed channels and then dynamically adjust the hopping parameters,can mitigate the hostile jamming.However,due to the explosive growth of serves and data traffic,it is very difficult to significantly increase the anti-jamming results and achieve high capacities with full/half duplex CFH for both PUs and SUs in cognitive radio networks.To achieve efficient anti-jamming and high capacities for PUs and SUs,in this paper we propose the orbital angular momentum(OAM)-based hybrid-duplex CFH scheme,which jointly uses the half-duplex cooperative sensing and full-duplex transmission modes for PUs and SUs in cognitive radio networks.Using the OAM-based hybrid-duplex CFH scheme,PUs and SUs can identify the occupancy of licensed channels with half-duplex fashion,thus significantly reducing the probability of signals jammed.Then,based on the sensing results,the signals are allowed to be transmitted and received by the same time-slots,carrier frequencies,and OAM-modes.The average capacities of PUs and SUs are derived,respectively.Extensively numerical results show that our proposed OAM-based hybrid-duplex CFH scheme can significantly increase the capacities of PUs and SUs in cognitive radio networks under hostile jamming attacks.