As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele...This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.展开更多
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic...The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.展开更多
With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Pow...With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.展开更多
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
Continued increases in the emission of greenhouse gases by passenger ve<span style="font-family:Verdana;">hicles ha</span><span style="font-family:Verdana;">ve</span><spa...Continued increases in the emission of greenhouse gases by passenger ve<span style="font-family:Verdana;">hicles ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the upcoming drive cycle. Real-time control strategies use the global optimal as a benchmark against which performance can be evaluated. The goal of this work is to use a previously defined strategy that has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions. The strate</span><span style="font-family:Verdana;">gy used is the Equivalent Consumption Minimization Strategy (ECMS),</span><span style="font-family:Verdana;"> which uses an equivalence factor to define the control strategy and the power train </span><span style="font-family:Verdana;">component torque split. An equivalence factor that is optimal for a single</span><span style="font-family:Verdana;"> drive cycle can be found offline</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">with </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the drive cycle. The RBF-ANN is used to dynamically update the equivalence factor by examining a past time window of driving characteristics. A total of 30 sets of training data (drive cycles) are used to train the RBF-ANN. For the majority of drive cycles examined, the RBF-ANN implementation is shown to produce fuel economy values that are within ±2.5% of the fuel economy obtained with the optimal equivalence factor. The advantage of the RBF-ANN is that it does not require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> drive cycle knowledge and is able to be implemented in real-time while meeting or exceeding the performance of the optimal ECMS. Recommendations are made on how the RBF-ANN could be improved to produce better results across a greater array of driving conditions.</span></span>展开更多
In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the...In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV.展开更多
In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative bra...In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.展开更多
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat...Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.展开更多
Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and ...Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.展开更多
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai...Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.展开更多
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith...Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.展开更多
This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The...This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.展开更多
Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions ...Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.展开更多
With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant...With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.展开更多
This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimi...This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.展开更多
Many distribution systems operate under unbalanced loading conditions due to the connection of single phase loads to a three phase system. As PHEVs become more prevalent, it is expected that this unbalance will be fur...Many distribution systems operate under unbalanced loading conditions due to the connection of single phase loads to a three phase system. As PHEVs become more prevalent, it is expected that this unbalance will be further exacerbated due to the power draws from single phase chargers. Unbalanced loads reduce the overall system operating efficiency and power transfer capability of assets. In this paper, a new method of mitigating real power unbalance is suggested. It works by selecting which of the three phases that each single phase PHEV charger in a car park should be connected to. The algorithm is then tested on a simulation model of a real world distribution system. Using the balancing algorithm, balancing of the real power flowing through the feeder to the car park is accomplished.展开更多
It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Control...It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.展开更多
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.
文摘This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.
文摘The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.
基金supported in part by the National Natural Science Foundation of China(61773382,61773381,61533019)Chinese Guangdongs S&T projects(2016B090910001,2017B090912001)+1 种基金2016 S&T Benefiting Special Project(16-6-2-62-nsh)of Qingdao Achievements Transformation ProgramDongguan Innovation Talents Project(Gang Xiong)
文摘With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
文摘Continued increases in the emission of greenhouse gases by passenger ve<span style="font-family:Verdana;">hicles ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the upcoming drive cycle. Real-time control strategies use the global optimal as a benchmark against which performance can be evaluated. The goal of this work is to use a previously defined strategy that has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions. The strate</span><span style="font-family:Verdana;">gy used is the Equivalent Consumption Minimization Strategy (ECMS),</span><span style="font-family:Verdana;"> which uses an equivalence factor to define the control strategy and the power train </span><span style="font-family:Verdana;">component torque split. An equivalence factor that is optimal for a single</span><span style="font-family:Verdana;"> drive cycle can be found offline</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">with </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the drive cycle. The RBF-ANN is used to dynamically update the equivalence factor by examining a past time window of driving characteristics. A total of 30 sets of training data (drive cycles) are used to train the RBF-ANN. For the majority of drive cycles examined, the RBF-ANN implementation is shown to produce fuel economy values that are within ±2.5% of the fuel economy obtained with the optimal equivalence factor. The advantage of the RBF-ANN is that it does not require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> drive cycle knowledge and is able to be implemented in real-time while meeting or exceeding the performance of the optimal ECMS. Recommendations are made on how the RBF-ANN could be improved to produce better results across a greater array of driving conditions.</span></span>
基金Project(2007CB209707) supported by the National Basic Research Program of China
文摘In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV.
基金Supported by National Natural Science Foundation of China(No.61370088)International Scientific and Technological Cooperation Projects of China(No.2012DFB10060)Topic of the Ministry of Education about Humanities and Social Sciences of China(No.12JDGC007)
文摘In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.
基金supported by National Natural Science Foundation of China(Grant No.51005017)
文摘Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.
基金Electric Automobile and Intelligent Connected Automobile Industry Innovation Project of Anhui Province of China(Grant No.JAC2019022505)Key Research and Development Projects in Shandong Province of China(Grant No.2019TSLH701).
文摘Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.
文摘Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.
基金This project is supported by Electric Vehicle Key Project of National 863 Program of China (No.2001AA501200, 2001AA501211).
文摘Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.
文摘This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.
基金Supported by National Natural Science Foundation of China(Grant No.51605243)National Key Science and Technology Projects of China(Grant No.2014ZX04002041)1-class General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2016M590094)
文摘Recently,plug?in hybrid electric bus has been one of the energy?e cient solutions for urban transportation. However,the current vehicle e ciency is far from optimum,because the unpredicted external driving conditions are di cult to be obtained in advance. How to further explore its fuel?saving potential under the complicated city bus driving cycles through an e cient control strategy is still a hot research issue in both academic and engineering area. To realize an e cient coupling driving operation of the hybrid powertrain,a novel coupling driving control strategy for plug?in hybrid electric bus is presented. Combined with the typical feature of a city?bus?route,the fuzzy logic inference is employed to quantify the driving intention,and then to determine the coupling driving mode and the gear?shifting strategy. Considering the response deviation problem in the execution layer,an adaptive robust controller for electric machine is designed to respond to the transient torque demand,and instantaneously compensate the response delay and the engine torque fluctuation. The simulations and hard?in?loop tests with the actual data of two typical driving conditions from the real?world city?bus?route are carried out,and the results demonstrate that the pro?posed method could guarantee the hybrid powertrain to track the actual torque demand with 10.4% fuel economy improvement. The optimal fuel economy can be obtained through the optimal combination of working modes. The fuel economy of plug?in hybrid electric bus can be significantly improved by the proposed control scheme without loss of drivability.
文摘With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.
基金Project(KF2029)supported by the State Key Laboratory of Automotive Safety and Energy(Tsinghua University),ChinaProject(102253)supported partially by the Innovate UK。
文摘This paper studied a supervisory control system for a hybrid off-highway electric vehicle under the chargesustaining(CS)condition.A new predictive double Q-learning with backup models(PDQL)scheme is proposed to optimize the engine fuel in real-world driving and improve energy efficiency with a faster and more robust learning process.Unlike the existing“model-free”methods,which solely follow on-policy and off-policy to update knowledge bases(Q-tables),the PDQL is developed with the capability to merge both on-policy and off-policy learning by introducing a backup model(Q-table).Experimental evaluations are conducted based on software-in-the-loop(SiL)and hardware-in-the-loop(HiL)test platforms based on real-time modelling of the studied vehicle.Compared to the standard double Q-learning(SDQL),the PDQL only needs half of the learning iterations to achieve better energy efficiency than the SDQL at the end learning process.In the SiL under 35 rounds of learning,the results show that the PDQL can improve the vehicle energy efficiency by 1.75%higher than SDQL.By implementing the PDQL in HiL under four predefined real-world conditions,the PDQL can robustly save more than 5.03%energy than the SDQL scheme.
文摘Many distribution systems operate under unbalanced loading conditions due to the connection of single phase loads to a three phase system. As PHEVs become more prevalent, it is expected that this unbalance will be further exacerbated due to the power draws from single phase chargers. Unbalanced loads reduce the overall system operating efficiency and power transfer capability of assets. In this paper, a new method of mitigating real power unbalance is suggested. It works by selecting which of the three phases that each single phase PHEV charger in a car park should be connected to. The algorithm is then tested on a simulation model of a real world distribution system. Using the balancing algorithm, balancing of the real power flowing through the feeder to the car park is accomplished.
文摘It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.