期刊文献+
共找到922篇文章
< 1 2 47 >
每页显示 20 50 100
A comprehensive review on hybrid electric vehicles: architectures and components 被引量:10
1
作者 Krishna Veer Singh Hari Om Bansal Dheerendra Singh 《Journal of Modern Transportation》 2019年第2期77-107,共31页
The rapid consumption of fossil fuel and increased environmental damage caused by it have given a strong impetus to the growth and development of fuelefficient vehicles. Hybrid electric vehicles (HEVs) have evolved fr... The rapid consumption of fossil fuel and increased environmental damage caused by it have given a strong impetus to the growth and development of fuelefficient vehicles. Hybrid electric vehicles (HEVs) have evolved from their inchoate state and are proving to be a promising solution to the serious existential problem posed to the planet earth. Not only do HEVs provide better fuel economy and lower emissions satisfying environmental legislations, but also they dampen the effect of rising fuel prices on consumers. HEVs combine the drive powers of an internal combustion engine and an electrical machine. The main components of HEVs are energy storage system, motor, bidirectional converter and maximum power point trackers (MPPT, in case of solar-powered HEVs). The performance of HEVs greatly depends on these components and its architecture. This paper presents an extensive review on essential components used in HEVs such as their architectures with advantages and disadvantages, choice of bidirectional converter to obtain high efficiency, combining ultracapacitor with battery to extend the battery life, traction motors’ role and their suitability for a particular application. Inclusion of photovoltaic cell in HEVs is a fairly new concept and has been discussed in detail. Various MPPT techniques used for solar-driven HEVs are also discussed in this paper with their suitability. 展开更多
关键词 hybrid electric vehicle hybrid energy storage system architecture TRACTION motors BIDIRECTIONAL CONVERTER
下载PDF
Implementation of Fuzzy Logic Control into an Equivalent Minimization Strategy for Adaptive Energy Management of A Parallel Hybrid Electric Vehicle
2
作者 Jared A. Diethorn Andrew C. Nix +1 位作者 Mario G. Perhinschi W. Scott Wayne 《Journal of Transportation Technologies》 2024年第1期88-118,共31页
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr... As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC. 展开更多
关键词 hybrid electric vehicle Fuzzy Logic Adaptive control Charge Sustainability
下载PDF
Novel flexible hybrid electric system and adaptive online-optimal energy management controller for plug-in hybrid electric vehicles 被引量:4
3
作者 何建辉 杨林 +2 位作者 羌嘉曦 陈自强 朱建新 《Journal of Central South University》 SCIE EI CAS 2012年第4期962-973,共12页
In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the... In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV. 展开更多
关键词 e-CVT flexible full hybrid electric system adaptive online-optimal controller plug-in hybrid vehicle
下载PDF
Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking 被引量:22
4
作者 ZHANG Jianlong YIN Chengliang ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期42-49,共8页
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th... Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective. 展开更多
关键词 hybrid electric vehicle regenerative braking anti-lock braking fuzzy logic control electro-mechanical hybrid anti-lock braking
下载PDF
An Investigation into Regenerative Braking Control Strategy for Hybrid Electric Vehicle 被引量:7
5
作者 PENG Dong(彭栋) +3 位作者 YIN Cheng-liang(殷承良) ZHANG dian-wu(张建武) 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第4期407-412,共6页
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad... Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle. 展开更多
关键词 hybrid electric vehicle regenerative braking torque hydraulic braking torque fuzzy logic control
下载PDF
Energy Control of Plug-In Hybrid Electric Vehicles Using Model Predictive Control With Route Preview 被引量:4
6
作者 Yang Zhao Yanguang Cai Qiwen Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1948-1955,共8页
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic... The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy. 展开更多
关键词 Energy management model predictive control(MPC) optimal control plug-in hybrid electric vehicle(PHEV)
下载PDF
OPTIMAL TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLE WITH AUTOMATIC MECHANICAL TRANSMISSION 被引量:12
7
作者 GU Yanchun YIN Chengliang ZHANG Jianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期16-20,共5页
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears... In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously. 展开更多
关键词 Parallel hybrid electric vehicle (PHEV) Automatic mechanical transmission (AMT) Driving smoothness Clutch abrasion Optimal control Fuzzy logic control
下载PDF
The Combination of Two Control Strategies for Series Hybrid Electric Vehicles 被引量:2
8
作者 Can Luo Zhen Shen +2 位作者 Simos Evangelou Gang Xiong Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期596-608,共13页
With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Pow... With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment. 展开更多
关键词 DC-Link voltage control power follower control strategy series hybrid electric vehicles tuning
下载PDF
Implementation of Radial Basis Function Artificial Neural Network into an Adaptive Equivalent Consumption Minimization Strategy for Optimized Control of a Hybrid Electric Vehicle 被引量:2
9
作者 Thomas P. Harris Andrew C. Nix +3 位作者 Mario G. Perhinschi W. Scott Wayne Jared A. Diethorn Aaron R. Mull 《Journal of Transportation Technologies》 2021年第4期471-503,共33页
Continued increases in the emission of greenhouse gases by passenger ve<span style="font-family:Verdana;">hicles ha</span><span style="font-family:Verdana;">ve</span><spa... Continued increases in the emission of greenhouse gases by passenger ve<span style="font-family:Verdana;">hicles ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the upcoming drive cycle. Real-time control strategies use the global optimal as a benchmark against which performance can be evaluated. The goal of this work is to use a previously defined strategy that has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions. The strate</span><span style="font-family:Verdana;">gy used is the Equivalent Consumption Minimization Strategy (ECMS),</span><span style="font-family:Verdana;"> which uses an equivalence factor to define the control strategy and the power train </span><span style="font-family:Verdana;">component torque split. An equivalence factor that is optimal for a single</span><span style="font-family:Verdana;"> drive cycle can be found offline</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">with </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the drive cycle. The RBF-ANN is used to dynamically update the equivalence factor by examining a past time window of driving characteristics. A total of 30 sets of training data (drive cycles) are used to train the RBF-ANN. For the majority of drive cycles examined, the RBF-ANN implementation is shown to produce fuel economy values that are within ±2.5% of the fuel economy obtained with the optimal equivalence factor. The advantage of the RBF-ANN is that it does not require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> drive cycle knowledge and is able to be implemented in real-time while meeting or exceeding the performance of the optimal ECMS. Recommendations are made on how the RBF-ANN could be improved to produce better results across a greater array of driving conditions.</span></span> 展开更多
关键词 hybrid electric vehicle Artificial Neural Network Equivalent Consumption Minimization Strategy (ECMS) Optimal control Strategy
下载PDF
Modeling and Control of Parallel Hybrid Electric Vehicle Using Sea-Lion Optimization
10
作者 J.Leon Bosco Raj M.Marsaline Beno 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1441-1454,共14页
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele... This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle. 展开更多
关键词 hybrid electric vehicle(HEV) proportional integral controller parallel HEV fuel efficiency new European driving cycle(NEDC) sea lion optimization(SLnO)
下载PDF
Electro-mechanical Braking Method in Hybrid Electric Vehicles Based on Feedback Control Theory 被引量:1
11
作者 ZHANG Li YU Jun-quan +1 位作者 LIU Zheng-yu CHANG Cheng 《Computer Aided Drafting,Design and Manufacturing》 2014年第1期55-59,共5页
In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative bra... In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better. 展开更多
关键词 hybrid electrical vehicle feedback control regenerative braking efficiency ADVISOR
下载PDF
An optimal energy management development for various configuration of plug-in and hybrid electric vehicle 被引量:8
12
作者 Morteza Montazeri-Gh Mehdi Mahmoodi-K 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1737-1747,共11页
Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai... Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions. 展开更多
关键词 plug-in and hybrid electric vehicle energy management CONFIGURATION genetic fuzzy controller fuel consumption EMISSION
下载PDF
ENERGY MANAGEMENT STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES 被引量:4
13
作者 PuJinhuan YinChengliang ZhangJianwu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期215-219,共5页
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith... Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests. 展开更多
关键词 hybrid powertrain hybrid electric vehicle (HEV) Energy management strategy(EMS) Real-time control Field test
下载PDF
Hybrid Excited Permanent Magnet Machines for Electric and Hybrid Electric Vehicles 被引量:7
14
作者 Z.Q.Zhu S.Cai 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第3期233-247,共15页
This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The... This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized. 展开更多
关键词 electric vehicle(EV) flux weakening control hybrid electric vehicle(HEV) hybrid excited(HE)machine open-winding permanent magnet(PM).
下载PDF
Real-time energy-efficient anticipative driving control of connected and automated hybrid electric vehicles
15
作者 Shiying Dong Hong Chen +2 位作者 Lulu Guo Qifang Liu Bingzhao Gao 《Control Theory and Technology》 EI CSCD 2022年第2期210-220,共11页
In this paper,we propose a real-time energy-efficient anticipative driving control strategy for connected and automated hybrid electric vehicles(HEVs).Considering the inherent complexities brought about by the velocit... In this paper,we propose a real-time energy-efficient anticipative driving control strategy for connected and automated hybrid electric vehicles(HEVs).Considering the inherent complexities brought about by the velocity profile optimization and energy management control,a hierarchical control architecture in the model predictive control(MPC)framework is developed for real-time implementation.In the higher level controller,a novel velocity optimization problem is proposed to realize safe and energy-efficient anticipative driving.The real-time control actions are derived through a computationally efficient algorithm.In the lower level controller,an explicit solution of the optimal torque split ratio and gear shift schedule is introduced for following the optimal velocity profile obtained from the higher level controller.The comparative simulation results demonstrate that the proposed strategy can achieve approximately 13%fuel consumption saving compared with a benchmark strategy. 展开更多
关键词 Connected and automated vehicle hybrid electric vehicle Anticipative driving Hierarchical control architecture Real-time solution
原文传递
Optimizing hybrid electric vehicle coupling organic Rankine cycle energy management strategy via deep reinforcement learning
16
作者 Xuanang Zhang Xuan Wang +2 位作者 Ping Yuan Hua Tian Gequn Shu 《Energy and AI》 EI 2024年第3期295-312,共18页
Trucks consume a lot of energy. Hybrid technology maintains a long range while realizing energy savings. Hybrid is therefore an effective energy-saving technology for trucks. Recovery of engine waste heat through the ... Trucks consume a lot of energy. Hybrid technology maintains a long range while realizing energy savings. Hybrid is therefore an effective energy-saving technology for trucks. Recovery of engine waste heat through the organic Rankine cycle further enhances engine efficiency and provides effective thermal management. However, the powertrain greatly increases the complexity of energy management system. In order to design an energy management system with high efficiency and robustness, this study proposes a deep reinforcement learning embedded rule-based energy management system. This method optimises the key parameters of the rule-based energy management system by inserting deep reinforcement learning into it. Therefore, this scheme combines the good optimization effect of deep reinforcement learning and the excellent robustness of rule. In order to verify the feasibility of this scheme, this study builds the system dynamic model and carries out a simulation study. Subsequently, a hybrid powertrain semi physical experimental bench was constructed and a rapid control prototype experimental study was carried out. The simulation results show that the deep reinforcement learning embedded rule-based energy management system can reduce the energy consumption by 4.31 % compared with the rule-based energy management system under the C-WTVC driving cycle. In addition, energy saving and safe operation can also be achieved under other unfamiliar untrained driving cycles. The rapid control prototype experimental study shows that the deep reinforcement learning embedded rule-based energy management system has good agreement in experiment and simulation, which demonstrates the potential for real vehicle engineering applications and promotes the engineering application of deep reinforcement learning. 展开更多
关键词 Deep reinforcement learning hybrid electric vehicle Organic Rankine cycle Energy management system Rapid control prototype
原文传递
Drivability improvements for a single-motor parallel hybrid electric vehicle using robust controls 被引量:3
17
作者 Hu ZHANG Cun-lei WANG Yong ZHANG Jun-yi LIANG Cheng-liang YIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2014年第4期291-301,共11页
For a single-motor parallel hybrid electric vehicle, during mode transitions (especially the transition from electric drive mode to engine/parallel drive mode, which requires the clutch engagement), the drivability ... For a single-motor parallel hybrid electric vehicle, during mode transitions (especially the transition from electric drive mode to engine/parallel drive mode, which requires the clutch engagement), the drivability of the vehicle will be signifi- cantly affected by a clutch torque induced disturbance, driveline oscillations and jerks which can occur without adequate controls. To improve vehicle drivability during mode transitions for a single-motor parallel hybrid electric vehicle, two controllers are proposed. The first controller is the engine-side controller for engine cranking/starting and speed synchronization. The second controller is the motor-side controller for achieving a smooth mode transition with reduced driveline oscillations and jerks under the clutch torque induced disturbance and system uncertainties. The controllers are all composed of a feed-forward control and a robust feedback control. The robust controllers are designed by using the mu synthesis method. In the design process, control- oriented system models that take account of various parameter uncertainties and un-modeled dynamics are used. The results of the simulation demonstrate the effectiveness of the proposed control algorithms. 展开更多
关键词 hybrid electric vehicle DRIVABILITY Mode transition Robust control Mu synthesis
原文传递
A Novel Braking Control Strategy for Hybrid Electric Buses Based on Vehicle Mass and Road Slope Estimation 被引量:1
18
作者 Zijun Liu Shuo Cheng +3 位作者 Jinzhao Liu Qiong Wu Liang Li Huawei Liang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期340-350,共11页
Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and ... Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque. 展开更多
关键词 hybrid electric bus vehicle mass estimation Road slope estimation Braking control strategy Regenerative braking
下载PDF
Series-parallel Hybrid Vehicle Control Strategy Design and Optimization Using Real-valued Genetic Algorithm 被引量:14
19
作者 XIONG Weiwei YIN Chengliang ZHANG Yong ZHANG Jianlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第6期862-868,共7页
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been... Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle, few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy. In this paper, a series-parallel hybrid electric bus as well as its control strategy is revealed, and a control parameter optimization approach using the real-valued genetic algorithm is proposed. The optimization objective is to minimize the fuel consumption while sustain the battery state of charge, a tangent penalty function of state of charge(SOC) is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem. For this strategy, the vehicle operating mode is switched based on the vehicle speed, and an "optimal line" typed strategy is designed for the parallel control. The optimization parameters include the speed threshold for mode switching, the highest state of charge allowed, the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed. They are optimized through numerical experiments based on real-value genes, arithmetic crossover and mutation operators. The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test, in which a control area network-based monitor system was used to trace the driving schedule. The test result shows that this approach is feasible for the control parameter optimization. This approach can be applied to not only the novel construction presented in this paper, but also other types of hybrid electric vehicles. 展开更多
关键词 series-parallel hybrid electric vehicle control strategy DESIGN OPTIMIZATION real-valued genetic algorithm
下载PDF
MPC-based energy management with adaptive Markov-chain prediction for a dual-mode hybrid electric vehicle 被引量:12
20
作者 XIANG ChangLe DING Feng +2 位作者 WANG WeiDa HE Wei QI YunLong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第5期737-748,共12页
The energy management strategy is an important part of a hybrid electrical vehicle design. It is used to improve fuel economy and to sustain a proper battery state of charge by controlling the power components while s... The energy management strategy is an important part of a hybrid electrical vehicle design. It is used to improve fuel economy and to sustain a proper battery state of charge by controlling the power components while satisfying various constraints and driving demands. However, achieving an optimal control performance is challenging due to the nonlinearities of the hybrid powertrain, the time varying constraints, and the dilemma in which controller complexity and real-time capability are generally conflicting objectives. In this paper, a real-time capable cascaded control strategy is proposed for a dual-mode hybrid electric vehicle that considers nonlinearities of the system and complies with all time-varying constraints. The strategy consists of a supervisory controller based on a non-linear model predictive control (MPC) with a long sampling time interval and a coordinating controller based on linear model predictive control with a short sampling time interval to deal with different dynamics of the system. Additionally, a novel data based methodology using adaptive Markov chains to predict future load demand is introduced. The predictive future information is used to improve controller performance. The proposed strategy is implemented on a real test-bed and experimental trials using unknown driving cycles are conducted. The results demonstrate the validity of the proposed approach and show that fuel economy is significantly improved compared with other methods. 展开更多
关键词 hybrid electric vehicle DUAL-MODE energy management Markov chains model predictive control
原文传递
上一页 1 2 47 下一页 到第
使用帮助 返回顶部