期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mechanical Properties of Layered Steel Fiber and Hybrid Fiber Reinforced Concrete 被引量:5
1
作者 卢哲安 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期733-736,共4页
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com... To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C. 展开更多
关键词 layered steel fiber reinforced concrete mechanical properties layer hybrid fiber reinforced concrete
下载PDF
Mechanical Properties of Layered Hybrid Fiber Reinforced Concrete 被引量:3
2
作者 袁海庆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期68-70,共3页
To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical pr... To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly. 展开更多
关键词 layered hybrid fiber reinforced concrete STRENGTH flexural toughness
下载PDF
Flexural Fatigue Behavior of Layered Hybrid Fiber Reinforced Concrete 被引量:1
3
作者 王佶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期560-563,共4页
In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress... In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress levels was simulated using the two-parameter Weibull distribution. Furthermore, both single- logarithmic and double-logarithmic regressive equations of various reliabilities were derived. It is evident that LHFRC gets the advantage of longer fatigue life over common concrete. 展开更多
关键词 layered hybrid fiber reinforced concrete(LHFRC) flexural intensity fatigue test fatigue equationion
下载PDF
An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power 被引量:1
4
作者 Fangvu LIU Wenqi DING +1 位作者 Yafei QIAO Linbing WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第6期1299-1315,共17页
The tensile behavior of hybrid fiber reinforced concrete(HFRC)is important to the design of HFRC and HFRC structure.This study used an artificial neural network(ANN)model to describe the tensile behavior of HFRC.This ... The tensile behavior of hybrid fiber reinforced concrete(HFRC)is important to the design of HFRC and HFRC structure.This study used an artificial neural network(ANN)model to describe the tensile behavior of HFRC.This ANN model can describe well the tensile stress-strain curve of HFRC with the consideration of 23 features of HFRC.In the model,three methods to process output features(no-processed,mid-processed,and processed)are discussed and the mid-processed method is recommended to achieve a better reproduction of the experimental data.This means the strain should be normalized while the stress doesn’t need normalization.To prepare the database of the model,both many direct tensile test results and the relevant literature data are collected.Moreover,a traditional equation-based model is also established and compared with the ANN model.The results show that the ANN model has a better prediction than the equation-based model in terms of the tensile stress-strain curve,tensile strength,and strain corresponding to tensile strength of HFRC.Finally,the sensitivity analysis of the ANN model is also performed to analyze the contribution of each input feature to the tensile strength and strain corresponding to tensile strength.The mechanical properties of plain concrete make the main contribution to the tensile strength and strain corresponding to tensile strength,while steel fibers tend to make more contributions to these two items than PVA fibers. 展开更多
关键词 artificial neural network hybrid fiber reinforced concrete tensile behavior sensitivity analysis STRESS-STRAIN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部