To investigate the possible involvement of endogenous plant hormones in heterosis of Liriodendron interspecific hybrid, growth traits and contents of endogenous GA 1/3 (gibberellin A 1, A 3), IAA (indole_3_a...To investigate the possible involvement of endogenous plant hormones in heterosis of Liriodendron interspecific hybrid, growth traits and contents of endogenous GA 1/3 (gibberellin A 1, A 3), IAA (indole_3_acetic acid) and iPA (isopentenyl adenine) of tulip tree ( L. chinense (Hemsl.) Sarg.), yellow poplar ( L. tulipifera L.) and their interspecific hybrid ( L. chinense × L. tulipifera ) were examined. Results showed that: (1) the heterosis in height growth trait of the interspecific hybrid was mainly caused by the reletively greater elongation of internodes. Although the uppermost three internodes had the potential of elongation, the first one, which had the greatest elongation amount, contributed to the heterosis of the height growth trait; (2) the contents of endogenous GA 1/3 , IAA and iPA were greatly different among tulip tree, yellow poplar and their interspecific hybrid. All of the three interspecific hybrid families studied significantly contained higher amount of endogenous GA 1/3 and iPA in the uppermost first internode than their parental species. And thus, a correlation between the contents of endogenous GA 1/3 and iPA, and hybrid vigor for height growth trait in Liriodendron was observed; (3) the rankings of endogenous GA 1/3 and iPA contents in the uppermost first internode of three hybrid families studied were not similar to the ranking for height of 3_year_old trees. Therefore, the contents of endogenous GA 1/3 and iPA in the uppermost first internode could not be used in predicting hybrid vigor among hybrid families.展开更多
文摘To investigate the possible involvement of endogenous plant hormones in heterosis of Liriodendron interspecific hybrid, growth traits and contents of endogenous GA 1/3 (gibberellin A 1, A 3), IAA (indole_3_acetic acid) and iPA (isopentenyl adenine) of tulip tree ( L. chinense (Hemsl.) Sarg.), yellow poplar ( L. tulipifera L.) and their interspecific hybrid ( L. chinense × L. tulipifera ) were examined. Results showed that: (1) the heterosis in height growth trait of the interspecific hybrid was mainly caused by the reletively greater elongation of internodes. Although the uppermost three internodes had the potential of elongation, the first one, which had the greatest elongation amount, contributed to the heterosis of the height growth trait; (2) the contents of endogenous GA 1/3 , IAA and iPA were greatly different among tulip tree, yellow poplar and their interspecific hybrid. All of the three interspecific hybrid families studied significantly contained higher amount of endogenous GA 1/3 and iPA in the uppermost first internode than their parental species. And thus, a correlation between the contents of endogenous GA 1/3 and iPA, and hybrid vigor for height growth trait in Liriodendron was observed; (3) the rankings of endogenous GA 1/3 and iPA contents in the uppermost first internode of three hybrid families studied were not similar to the ranking for height of 3_year_old trees. Therefore, the contents of endogenous GA 1/3 and iPA in the uppermost first internode could not be used in predicting hybrid vigor among hybrid families.