Hybrid improper ferroelectricity has been extensively reported through theoretical prediction and experimental investigation in the oxides with Ruddlesden-Popper(R-P)structures.However,the experimentally reported ferr...Hybrid improper ferroelectricity has been extensively reported through theoretical prediction and experimental investigation in the oxides with Ruddlesden-Popper(R-P)structures.However,the experimentally reported ferroelectric materials based on triple-layer R-P structures are rare,and the weak ferroelectricity impedes its practical application.In the present work,the single-phase Li_(2)Nd_(2)Ti_(3)O_(10)ceramics with A-site cation ordered triple-layer R-P structure was obtained by spark plasma sintering technique,and the crystal structure of P2_(1)ab symmetry was revealed by neutron powder diffraction and transmission electron microscope analysis.Furthermore,the switchable ferroelectricity in Li_(2)Nd_(2)Ti_(3)O_(10)ceramics has been observed at room temperature,and the saturated polarization-electric field hysteresis loop was obtained with P_(r)=0.4μC/cm^(2)under the electric field of 250 kV/cm.The phase transition behavior of Li_(2)Nd_(2)Ti_(3)O_(10)oxides was revealed by the temperature-dependence Raman and dielectric spectra combined with the piezoelectric property.展开更多
Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition thr...Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition through dielectric characterization.According to the previous theoretical design rule,the Curie temperature can be suppressed by increasing the tolerance factor.So,in the present work,high-quality Ca_(3-x)LaxTi_(2-x)Al_(x)O_(7)(x=0.0,0.1,0.2,0.3)ceramics with increased tolerance factors were successfully prepared.The amplitude of oxygen octahedral tilt mode indeed decreases with increasing tolerance factors,leading to a degeneration of ferroelectric polarization.However,the unexpected rigid rotation mode causes the composition-invariable coercive fields.The Curie temperatures decrease linearly with increasing x and tolerance factors.The variable-temperature dielectric constant confirms first-order improper ferroelectric transitions in Ca_(3)Ti_(2)O_(7)-based ceramics.The results of variable temperature Xray diffraction reveal the coexistence of two-phases below Curie temperature.The present work confidently confirms the first-order improper ferroelectric transition in Ca_(3)Ti_(2)O_(7)-based ceramics by combining results of variable-temperature dielectric response and in-situ X-ray powder diffraction.展开更多
基金supported by the National Key R&D Program of China under Grant No.2022YFB3807602the National Natural Science Foundation of China under Grant No.52172131the outstanding doctoral dissertation funding of Zhejiang University under Grant No.422048A.
文摘Hybrid improper ferroelectricity has been extensively reported through theoretical prediction and experimental investigation in the oxides with Ruddlesden-Popper(R-P)structures.However,the experimentally reported ferroelectric materials based on triple-layer R-P structures are rare,and the weak ferroelectricity impedes its practical application.In the present work,the single-phase Li_(2)Nd_(2)Ti_(3)O_(10)ceramics with A-site cation ordered triple-layer R-P structure was obtained by spark plasma sintering technique,and the crystal structure of P2_(1)ab symmetry was revealed by neutron powder diffraction and transmission electron microscope analysis.Furthermore,the switchable ferroelectricity in Li_(2)Nd_(2)Ti_(3)O_(10)ceramics has been observed at room temperature,and the saturated polarization-electric field hysteresis loop was obtained with P_(r)=0.4μC/cm^(2)under the electric field of 250 kV/cm.The phase transition behavior of Li_(2)Nd_(2)Ti_(3)O_(10)oxides was revealed by the temperature-dependence Raman and dielectric spectra combined with the piezoelectric property.
基金financially supported by the National Natural Science Foundation of China under Grant Nos.51772266 and 51790493the National Key R&D Program of China under Grant No.2016YFA0300101.
文摘Ca_(3)Ti_(2)O_(7) with Ruddlesden-Popper structure exhibits the largest polarization among the known hybrid improper ferroelectrics.However,the high Curie temperature impedes the thorough study of phase transition through dielectric characterization.According to the previous theoretical design rule,the Curie temperature can be suppressed by increasing the tolerance factor.So,in the present work,high-quality Ca_(3-x)LaxTi_(2-x)Al_(x)O_(7)(x=0.0,0.1,0.2,0.3)ceramics with increased tolerance factors were successfully prepared.The amplitude of oxygen octahedral tilt mode indeed decreases with increasing tolerance factors,leading to a degeneration of ferroelectric polarization.However,the unexpected rigid rotation mode causes the composition-invariable coercive fields.The Curie temperatures decrease linearly with increasing x and tolerance factors.The variable-temperature dielectric constant confirms first-order improper ferroelectric transitions in Ca_(3)Ti_(2)O_(7)-based ceramics.The results of variable temperature Xray diffraction reveal the coexistence of two-phases below Curie temperature.The present work confidently confirms the first-order improper ferroelectric transition in Ca_(3)Ti_(2)O_(7)-based ceramics by combining results of variable-temperature dielectric response and in-situ X-ray powder diffraction.