Given the speed requirements of a mechanical press slider, a differential gear train is adopted instead of the belt and gear drive of a general mechanical press. Two electric motors are used to drive the differential ...Given the speed requirements of a mechanical press slider, a differential gear train is adopted instead of the belt and gear drive of a general mechanical press. Two electric motors are used to drive the differential gear train with hybrid input. Based on the working principle of a differential gear train, the angular speed equations and the power dis- tribution equations of the input-output system are established. By controlling the angular speeds of the two motors, the slider can move at different speeds. Taken a JH23-100 type mechanical press as example, the driving system is designed and the power of two motors determined. The simulated results show that the highest slider speed in the mechanical press approaches 39 mm/s only at the forging-punching stage, far less than the 232 mm/s of a general JH23-100 type mechanical press. This provides a new scheme to realize low-speed forging-punching technology from a mechanical press.展开更多
Rectifiers with high efficiency and high power density are crucial to the stable and efficient power supply of 5G communication base stations,which deserves in-depth investigation.In general,there are two key problems...Rectifiers with high efficiency and high power density are crucial to the stable and efficient power supply of 5G communication base stations,which deserves in-depth investigation.In general,there are two key problems to be addressed:supporting both alternating current(AC)and direct current(DC)input,and minimizing the common-mode voltage as well as leakage current for safety reasons.In this paper,a hybrid five-level single-phase rectifier is proposed.A five-level topology is adopted in the upper arm,and a half-bridge diode topology is adopted in the lower arm.A dual closed-loop control strategy and a flying capacitor voltage regulation method are designed accordingly so that the compatibility of both AC and DC input is realized with low common voltage and small passive devices.Simulation and experimental results demonstrate the effectiveness and performance of the proposed rectifier.展开更多
In laser + P-GMA hybrid welding, laser-wire distance is an important parameter to describe the distance from laser spot to the center of the pulsed gas metal arc. The experiments results show that the optimal laser-w...In laser + P-GMA hybrid welding, laser-wire distance is an important parameter to describe the distance from laser spot to the center of the pulsed gas metal arc. The experiments results show that the optimal laser-wire distance with the deepest weld penetration increases with welding current and laser power being increased and decreases with welding speed being increased. Welding current, laser power and welding speed determine the hybrid welding heat input in laser + arc hybrid welding process, so there is a correlation between the optimal laser-wire distanee and the hybrid heat input welding parameters for the deepest weld penetration: the optimal laser-wire distance increases with the heat input being increased. The positive correlation between the optimal laser-wire distance and the hybrid welding heat input is induced by the characteristics of the limited influence of P-GMA welding process on laser transmission and the dependence of weld penetration of hybrid welding on laser power.展开更多
Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output system...Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.展开更多
文摘Given the speed requirements of a mechanical press slider, a differential gear train is adopted instead of the belt and gear drive of a general mechanical press. Two electric motors are used to drive the differential gear train with hybrid input. Based on the working principle of a differential gear train, the angular speed equations and the power dis- tribution equations of the input-output system are established. By controlling the angular speeds of the two motors, the slider can move at different speeds. Taken a JH23-100 type mechanical press as example, the driving system is designed and the power of two motors determined. The simulated results show that the highest slider speed in the mechanical press approaches 39 mm/s only at the forging-punching stage, far less than the 232 mm/s of a general JH23-100 type mechanical press. This provides a new scheme to realize low-speed forging-punching technology from a mechanical press.
文摘Rectifiers with high efficiency and high power density are crucial to the stable and efficient power supply of 5G communication base stations,which deserves in-depth investigation.In general,there are two key problems to be addressed:supporting both alternating current(AC)and direct current(DC)input,and minimizing the common-mode voltage as well as leakage current for safety reasons.In this paper,a hybrid five-level single-phase rectifier is proposed.A five-level topology is adopted in the upper arm,and a half-bridge diode topology is adopted in the lower arm.A dual closed-loop control strategy and a flying capacitor voltage regulation method are designed accordingly so that the compatibility of both AC and DC input is realized with low common voltage and small passive devices.Simulation and experimental results demonstrate the effectiveness and performance of the proposed rectifier.
基金Supported by the key project of Natural Science Foundation of Heilongjiang Province (ZJG0601 and the National Key Technologies Research and Development Program of China during the 11^th Five-Year Plan Period (2006BAFO4B10).
文摘In laser + P-GMA hybrid welding, laser-wire distance is an important parameter to describe the distance from laser spot to the center of the pulsed gas metal arc. The experiments results show that the optimal laser-wire distance with the deepest weld penetration increases with welding current and laser power being increased and decreases with welding speed being increased. Welding current, laser power and welding speed determine the hybrid welding heat input in laser + arc hybrid welding process, so there is a correlation between the optimal laser-wire distanee and the hybrid heat input welding parameters for the deepest weld penetration: the optimal laser-wire distance increases with the heat input being increased. The positive correlation between the optimal laser-wire distance and the hybrid welding heat input is induced by the characteristics of the limited influence of P-GMA welding process on laser transmission and the dependence of weld penetration of hybrid welding on laser power.
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815)Important National Science & Technology Specific Projects (2017ZX03001028)
文摘Hybrid precoding and combining have been considered as a promising technology, which can provide a compromise between hardware complexity and system performance in millimeter wave multiple-input multiple-output systems. However, most existing hybrid precoder and combiner designs generally assume that infinite resolution phase shifters(PSs) are used to produce the analog beamformers. In a practical scene, the design with accurate PSs can lead to high hardware cost and power consumption. In this paper, we investigate the hybrid precoder and combiner design with finite resolution PSs in millimeter wave systems. We employ alternate optimization as the main strategy to jointly design analog precoder and combiner. In addition, we propose a low complexity algorithm, where the analog beamformers are implemented only by finite resolution PSs to maximize spectral efficiency. Then, the digital precoder and combiner are designed based on the obtained analog beamformers to improve the spectral efficiency. Finally, simulation results and mathematical analysis show that the proposed algorithm with low-resolution PSs can achieve near-optimal performance and have low complexity.