A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical n...A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical non-equilibrium reactions encounters the stiffness problem, thus taking huge CPU time. Based on the domain decomposition method, a high efficient automatic domain decomposer for three-dimensional hybrid meshes is developed, and then implemented to the numerical simulation of hypersonic flows. Control equations are multicomponent N-S equations, and spatially discretized scheme is used by a cell-centered finite volume algorithm with a five-stage Runge-Kutta time step. The chemical kinetic model is a seven species model with weak ionization. A point-implicit method is used to solve the chemical source term. Numerical results on PC-Cluster are verified on a bi-ellipse model compared with references.展开更多
In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The cal...In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.展开更多
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes....Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.展开更多
In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing ...In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing scheme that works differently accordingly to the node mobility.In this sense,a proactive routing scheme is restricted to the backbone to promote the use of stable routes.Conversely,the reactive protocol is used for searching routes to or from a mobile destination.Both approaches are simultaneously implemented in the mesh nodes so that the routing protocols share routing information that optimises the network performance.Aimed at guaranteeing the IP compatibility,the combination of the two protocols in the core routers is carried out in the Medium Access Control(MAC)layer.In contrast to the operation in the IP layer where two routing protocols cannot work concurrently,the transfer of the routing tasks to the MAC layer enables the use of multiple independent forwarding tables.Simulation results show the advantage of the proposal in terms of packet losses and data delay.展开更多
The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads...The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q(4)-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i.e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q(4)-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q(4)-element.展开更多
We have developed a hybrid solver that combines the finite-element and integralequation method for 3D CSEM modeling based on unstructured meshes. To avoid the source singularity, the secondary field is used in the mod...We have developed a hybrid solver that combines the finite-element and integralequation method for 3D CSEM modeling based on unstructured meshes. To avoid the source singularity, the secondary field is used in the modeling framework. The primary electromagnetic field from an electric dipole source in a layered medium is calculated based on the magnetic vector potential method. The inhomogeneities of the computational region are discretized by a vector-based finite-element mesh with boundaries at finite distance from the inhomogeneities by using the dyadic Green's function, reducing the truncation boundary effect and the solution region. The electric and magnetic Green's function is used in data postprocessing to reduce the numerical errors owing to inaccurate gradients because of unstructured meshes; thus, the electromagnetic field is more accurately calculated. Finally, the proposed algorithm is applied to a block and a disc model, and we assess the topography effect on the field components.展开更多
The motivation of this study is to investigate the turbulence-chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier-Stokes (RANS)/PDF method is use...The motivation of this study is to investigate the turbulence-chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier-Stokes (RANS)/PDF method is used to simulate the turbulent non-reacting and reacting flows. The joint fluctuating velocity-frequency-composition PDF equation coupled with the Reynolds averaged density, momentum and energy equations are solved on unstructured meshes by the Lagrangian Monte Carlo (MC) method combined with the finite volume (FV) method. The simulation of the axisymmetric bluff body stabilized non-reacting flow fields is presented in this paper. The calculated length of the recirculation zone is in good agreement with the experimental data. Moreover, the significant change of the flow pattern with the increase of the jet-to-coflow momentum flux ratio is well predicted. In addition, comparisons are made between the joint PDF model and two different Reynolds stress models.展开更多
文摘A parallel virtual machine (PVM) protocol based parallel computation of 3-D hypersonic flows with chemical non-equilibrium on hybrid meshes is presented. The numerical simulation for hypersonic flows with chemical non-equilibrium reactions encounters the stiffness problem, thus taking huge CPU time. Based on the domain decomposition method, a high efficient automatic domain decomposer for three-dimensional hybrid meshes is developed, and then implemented to the numerical simulation of hypersonic flows. Control equations are multicomponent N-S equations, and spatially discretized scheme is used by a cell-centered finite volume algorithm with a five-stage Runge-Kutta time step. The chemical kinetic model is a seven species model with weak ionization. A point-implicit method is used to solve the chemical source term. Numerical results on PC-Cluster are verified on a bi-ellipse model compared with references.
文摘In order to analyze the hydrodynamic performance of the ducted propeller with high precision, this paper proposes a new method which combines Multi-Block Hybrid Mesh and Reynolds Stress Model (MBHM & RSM). The calculation errors of MBHM & RSM and standard two-equation model (standard k-ε model) on the ducted propeller JD7704 +Ka4-55 are compared. The maximum error of the total thrust coefficient KT, the duct thrust coefficient KTN, the torque coefficient KQ and the open-water efficiency η0 of MBHM & RSM are 2.98%, 4.01%, 1.46%, and 0.89%, respectively, which are lower than those of standard k-ε model. Indeed, the pressure distribution on the propeller surfaces, the pressure and the velocity vector distribution of the flow field are also analyzed, which are consistent with the theory. It is demonstrated that MBHM & RSM on the thruster dynamics analysis are feasible. This paper provides reference in the thruster designing of underwater robot.
基金Project supported by the National Basic Research Program of China(No.2009CB724104)
文摘Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.
文摘In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing scheme that works differently accordingly to the node mobility.In this sense,a proactive routing scheme is restricted to the backbone to promote the use of stable routes.Conversely,the reactive protocol is used for searching routes to or from a mobile destination.Both approaches are simultaneously implemented in the mesh nodes so that the routing protocols share routing information that optimises the network performance.Aimed at guaranteeing the IP compatibility,the combination of the two protocols in the core routers is carried out in the Medium Access Control(MAC)layer.In contrast to the operation in the IP layer where two routing protocols cannot work concurrently,the transfer of the routing tasks to the MAC layer enables the use of multiple independent forwarding tables.Simulation results show the advantage of the proposal in terms of packet losses and data delay.
文摘The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q(4)-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i.e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q(4)-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q(4)-element.
基金supported by the National Nature Science Foundation of China(Nos.41830107 and 41574120)Doctoral Student Innovation Program(No.2016zzts086)
文摘We have developed a hybrid solver that combines the finite-element and integralequation method for 3D CSEM modeling based on unstructured meshes. To avoid the source singularity, the secondary field is used in the modeling framework. The primary electromagnetic field from an electric dipole source in a layered medium is calculated based on the magnetic vector potential method. The inhomogeneities of the computational region are discretized by a vector-based finite-element mesh with boundaries at finite distance from the inhomogeneities by using the dyadic Green's function, reducing the truncation boundary effect and the solution region. The electric and magnetic Green's function is used in data postprocessing to reduce the numerical errors owing to inaccurate gradients because of unstructured meshes; thus, the electromagnetic field is more accurately calculated. Finally, the proposed algorithm is applied to a block and a disc model, and we assess the topography effect on the field components.
基金The project supported by the National Natural Science Foundation of China (50506028)Action Scheme for Invigorating Education Towards the twenty-first century
文摘The motivation of this study is to investigate the turbulence-chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier-Stokes (RANS)/PDF method is used to simulate the turbulent non-reacting and reacting flows. The joint fluctuating velocity-frequency-composition PDF equation coupled with the Reynolds averaged density, momentum and energy equations are solved on unstructured meshes by the Lagrangian Monte Carlo (MC) method combined with the finite volume (FV) method. The simulation of the axisymmetric bluff body stabilized non-reacting flow fields is presented in this paper. The calculated length of the recirculation zone is in good agreement with the experimental data. Moreover, the significant change of the flow pattern with the increase of the jet-to-coflow momentum flux ratio is well predicted. In addition, comparisons are made between the joint PDF model and two different Reynolds stress models.