This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML trai...This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML training in basic HMM can be overcome, and its discriminative ability and recognition performance can be improved. Experimental results demonstrate that the discriminative ability and recognition performance of HMM/MLP is apparently better than normal HMM.展开更多
The demand for wireless data has been driving network capacity to double about every two years for the past 50 years, if not 100 years, and this has come to be known as Cooper's Law. In recent years, this trend has a...The demand for wireless data has been driving network capacity to double about every two years for the past 50 years, if not 100 years, and this has come to be known as Cooper's Law. In recent years, this trend has accelerated as a greater proportion of the population adopts wireless devices with ever greater capabilities, including tablets that support HD video and other advanced capabilities.展开更多
The mobile ad hoc network (MANET) with infrastructure networks (hybrid networks) has several practical uses. The utility of hybrid network is increased in real time applications by providing some suitable quality of s...The mobile ad hoc network (MANET) with infrastructure networks (hybrid networks) has several practical uses. The utility of hybrid network is increased in real time applications by providing some suitable quality of service. The quality thresholds are imposed on parameters like end-to-end delay (EED), jitter, packet delivery ratio (PDR) and throughput. This paper utilizes the extended ad hoc on-demand distance vector (AODV) routing protocol for communication between ad hoc network and fixed wired network. This paper also uses the IEEE 802.11e medium access control (MAC) function HCF Controlled Channel Access (HCCA) to support quality of service (QoS) in hybrid network. In this paper two simulation scenarios are analyzed for hybrid networks. The nodes in wireless ad hoc networks are mobile in one scenario and static in the other scenario. Both simulation scenarios are used to compare the performance of extended AODV with HCCA (IEEE 802.11e) and without HCCA (IEEE802.11) for real time voice over IP (VoIP) traffic. The extensive set of simulations results show that the performance of extended AODV with HCCA (IEEE 802.11e) improves QoS in hybrid network and it is unaffected whether the nodes in wireless ad hoc networks are mobile or static.展开更多
With the rapid development of related computer vision algorithms,the large-scale use of video surveillance systems has not only improved traffic safety,but also promoted the development of intelligent high-speed.Howev...With the rapid development of related computer vision algorithms,the large-scale use of video surveillance systems has not only improved traffic safety,but also promoted the development of intelligent high-speed.However,due to the complexity of the application scene,especially in the face of complex scene occlusion factors,the noise generated by the occlusion inevitably leads to the loss of the feature information of the identified person or object,which poses a great challenge to the existing pedestrian re-recognition algorithms.Therefore,this paper proposes a novel pedestrian re-recognition based on hybrid network.Feature extraction is carried out on four cooperative branches:local branch,global branch,global contrast pool branch and associated branch,and powerful diversity pedestrian feature expression ability is obtained.The network in this paper can be applied to different backbone networks.Through experimental comparison,the proposed algorithm has certain advantages compared with the latest methods,and the ablation experimental analysis further proves the effectiveness of the proposed network structure.展开更多
We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantu...We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.展开更多
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p...As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.展开更多
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in cl...We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed.展开更多
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th...With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.展开更多
Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal co...Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations.展开更多
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ...Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.展开更多
We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural netw...We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural network frameworks.Concretely,we first perform Lagrange interpolation in front of the deep feedforward neural network.The Lagrange basis function has a neat structure and a strong expression ability,which is suitable to be a preprocessing tool for pre-fitting and feature extraction.Second,we introduce small sample learning into training,which is beneficial to guide themodel to be corrected quickly.Taking advantages of the theoretical support of traditional numerical method and the efficient allocation of modern machine learning,LaNets achieve higher predictive accuracy compared to the state-of-the-artwork.The stability and accuracy of the proposed algorithmare demonstrated through a series of classical numerical examples,including one-dimensional Burgers equation,onedimensional carburizing diffusion equations,two-dimensional Helmholtz equation and two-dimensional Burgers equation.Experimental results validate the robustness,effectiveness and flexibility of the proposed algorithm.展开更多
The bipartite graph structure exists in the connections of many objects in the real world, and the evolving modeling is a good method to describe and understand the generation and evolution within various real complex...The bipartite graph structure exists in the connections of many objects in the real world, and the evolving modeling is a good method to describe and understand the generation and evolution within various real complex networks. Previous bipartite models were proposed to mostly explain the principle of attachments, and ignored the diverse growth speed of nodes of sets in different bipartite networks. In this paper, we propose an evolving bipartite network model with adjustable node scale and hybrid attachment mechanisms, which uses different probability parameters to control the scale of two disjoint sets of nodes and the preference strength of hybrid attachment respectively. The results show that the degree distribution of single set in the proposed model follows a shifted power-law distribution when parameter r and s are not equal to 0, or exponential distribution when r or s is equal to 0. Furthermore, we extend the previous model to a semi-bipartite network model, which embeds more user association information into the internal network, so that the model is capable of carrying and revealing more deep information of each user in the network. The simulation results of two models are in good agreement with the empirical data, which verifies that the models have a good performance on real networks from the perspective of degree distribution. We believe these two models are valuable for an explanation of the origin and growth of bipartite systems that truly exist.展开更多
When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect pr...When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect prediction is elaborated through an innovative hybrid machine learning framework. The proposed technique combines an advanced deep neural network architecture with ensemble models such as Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The study evaluates the performance by considering multiple software projects like CM1, JM1, KC1, and PC1 using datasets from the PROMISE Software Engineering Repository. The three hybrid models that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, GaussianNB, Support Vector Classification (SVC), Neural Network), and the Hybrid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC AUC, and precision. The presented work offers valuable insights into the effectiveness of hybrid techniques for cross-project defect prediction, providing a comparative perspective on early defect identification and mitigation strategies. .展开更多
In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified ...In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synehronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and sealing exponent to meet actual requirement for the dynanfic characteristics of the UHNTF.展开更多
The benefit of a two-layer hybrid IP/MPLS (multi-protocol label switching) over a wavelength division multiplexing network has been analyzed considering both the cost and different grooming policies. A detailed cost...The benefit of a two-layer hybrid IP/MPLS (multi-protocol label switching) over a wavelength division multiplexing network has been analyzed considering both the cost and different grooming policies. A detailed cost and performance analysis of hybrid networks is done for three different grooming policies. The hybrid network cost is compared with that of an opaque network for equal traffic demand and equal blocking probability of dynamic requests of label switched paths. An algorithm is given to design optimum hybrid nodes for different grooming policies to provide the desired blocking probability for a given number of dynamic connection requests. The results show that all three applied grooming policies (IP layer first, optical layer first, and one hop first) result in lower costs of the hybrid network architecture than for the opaque network. In addition, an adaptive one hop first method is given to improve the best of the applied grooming policies, which limits grooming in heavily loaded hybrid nodes to achieve load balancing. The simulation resuits show that the new policy significantly reduces the overall blocking probability.展开更多
Most of studies on network capacity are based on the assumption that all the nodes are uniformly distributed, which means that the networks are characterized by homogeneity. However, many realistic networks exhibit in...Most of studies on network capacity are based on the assumption that all the nodes are uniformly distributed, which means that the networks are characterized by homogeneity. However, many realistic networks exhibit inhomogeneity due to natural and man-made reasons. In this work, the capacity of inhomogeneous hybrid networks with directional antennas for the first time is studied. By setting different node distribution probabilities, the whole network can be devided into dense cells and sparse cells. On this basis, an inhomogeneous hybrid network model is proposed. The network can exhibit significant inhomogeneity due to the coexistence of two types of cells. Then, we derive the network capacity and maximize the capacity under different channel allocation schemes. Finally, how the network parameters influence the network capacity is analyzed. It is found that if there are plenty of base stations, the per-node throughput can achieve constant order, and if the beamwidth of directional antenna is small enough, the network capacity can scale.展开更多
Network virtualization provides a powerful way of sharing substrate networks. Efficient allocation of network resources for multiple virtual networks( VNs) has always been a challenging task. Especially under the ever...Network virtualization provides a powerful way of sharing substrate networks. Efficient allocation of network resources for multiple virtual networks( VNs) has always been a challenging task. Especially under the everincreasing demand of customized VN requests,many problems arise as network conditions change constantly.Particularly with the emergance of resource conflict alongside the development of VNs,service provider( SP) needs to provide a faster and more effective solution. Recently,software defined network( SDN) has emerged as a new networking paradigm,SDN’s centralized control and customizable routing features present new opportunities for convenient and flexible embedding VNs in the network. However,due to the limitations of SDN,replacing all legacy devices in current operational networks by SDN-enabled switches in a short span of time is impractical.Thus,in our study,we focus on the scenario of VN embedding( VNE) in software-defined hybrid networks. In this work,first of all,we propose partially deploying SDN nodes; and then,we use the characteristics of SDN to allocate resources for VN requests,and redirect the path for requests conflict in hybrid SDN network. We formulate the problems and provide simple algorithms to solve them. Simulation results show that our scheme has high ratio in responsiveness and acceptance.展开更多
Because of its high theoretical capacity,transition metal sulfides have always been regarded as promising anode materials for potas-slum-ion batteries.However,It is difficult for us to make use of transition metal sul...Because of its high theoretical capacity,transition metal sulfides have always been regarded as promising anode materials for potas-slum-ion batteries.However,It is difficult for us to make use of transition metal sulfides due to their low conductivity,poor ionic dif-fusivity,sluggish reaction kinetics and severe volume expansion.Here,we developed a novel carbon-coated CoSx@CNT material with carbon nanotubes inter-connected(CCS@CNT),which shows an excellent potassium storage performance with a specific capacity of 550 mA·h·g^(-1) under the current of 50 mA·g^(-1) and 296 mA·hg^(-1) at 1000 mA·g-1.The carbon layer can effectively alleviate volume ex-pansion during charging and discharging process.And this special structure of inter-connected hybrid networks with CNTs greatly improves the electron transport,ion diffusion coefficient and reaction kinetics of the material.展开更多
文摘This paper presents a new HMM/MLP hybrid network for speech recognition. By taking advantage of the discriminative training of MLP, the unreasonable model correctness assumption on the model correctness of the ML training in basic HMM can be overcome, and its discriminative ability and recognition performance can be improved. Experimental results demonstrate that the discriminative ability and recognition performance of HMM/MLP is apparently better than normal HMM.
文摘The demand for wireless data has been driving network capacity to double about every two years for the past 50 years, if not 100 years, and this has come to be known as Cooper's Law. In recent years, this trend has accelerated as a greater proportion of the population adopts wireless devices with ever greater capabilities, including tablets that support HD video and other advanced capabilities.
文摘The mobile ad hoc network (MANET) with infrastructure networks (hybrid networks) has several practical uses. The utility of hybrid network is increased in real time applications by providing some suitable quality of service. The quality thresholds are imposed on parameters like end-to-end delay (EED), jitter, packet delivery ratio (PDR) and throughput. This paper utilizes the extended ad hoc on-demand distance vector (AODV) routing protocol for communication between ad hoc network and fixed wired network. This paper also uses the IEEE 802.11e medium access control (MAC) function HCF Controlled Channel Access (HCCA) to support quality of service (QoS) in hybrid network. In this paper two simulation scenarios are analyzed for hybrid networks. The nodes in wireless ad hoc networks are mobile in one scenario and static in the other scenario. Both simulation scenarios are used to compare the performance of extended AODV with HCCA (IEEE 802.11e) and without HCCA (IEEE802.11) for real time voice over IP (VoIP) traffic. The extensive set of simulations results show that the performance of extended AODV with HCCA (IEEE 802.11e) improves QoS in hybrid network and it is unaffected whether the nodes in wireless ad hoc networks are mobile or static.
文摘With the rapid development of related computer vision algorithms,the large-scale use of video surveillance systems has not only improved traffic safety,but also promoted the development of intelligent high-speed.However,due to the complexity of the application scene,especially in the face of complex scene occlusion factors,the noise generated by the occlusion inevitably leads to the loss of the feature information of the identified person or object,which poses a great challenge to the existing pedestrian re-recognition algorithms.Therefore,this paper proposes a novel pedestrian re-recognition based on hybrid network.Feature extraction is carried out on four cooperative branches:local branch,global branch,global contrast pool branch and associated branch,and powerful diversity pedestrian feature expression ability is obtained.The network in this paper can be applied to different backbone networks.Through experimental comparison,the proposed algorithm has certain advantages compared with the latest methods,and the ablation experimental analysis further proves the effectiveness of the proposed network structure.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
文摘As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm.
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed.
文摘With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.
基金The authors express their appreciation to National Key Research and Development Project“Key Scientific Issues of Revolutionary Technology”(2019YFA0708300)Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)+1 种基金Distinguished Young Foundation of National Natural Science Foundation of China(52125401)Science Foundation of China University of Petroleum,Beijing(2462022SZBH002).
文摘Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFB2205102)the National Natural Science Foundation of China(Grant Nos.61974164,62074166,61804181,62004219,62004220,and 62104256).
文摘Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency.
基金supported by NSFC(No.11971296)National Key Research and Development Program of China(No.2021YFA1003004).
文摘We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural network frameworks.Concretely,we first perform Lagrange interpolation in front of the deep feedforward neural network.The Lagrange basis function has a neat structure and a strong expression ability,which is suitable to be a preprocessing tool for pre-fitting and feature extraction.Second,we introduce small sample learning into training,which is beneficial to guide themodel to be corrected quickly.Taking advantages of the theoretical support of traditional numerical method and the efficient allocation of modern machine learning,LaNets achieve higher predictive accuracy compared to the state-of-the-artwork.The stability and accuracy of the proposed algorithmare demonstrated through a series of classical numerical examples,including one-dimensional Burgers equation,onedimensional carburizing diffusion equations,two-dimensional Helmholtz equation and two-dimensional Burgers equation.Experimental results validate the robustness,effectiveness and flexibility of the proposed algorithm.
文摘The bipartite graph structure exists in the connections of many objects in the real world, and the evolving modeling is a good method to describe and understand the generation and evolution within various real complex networks. Previous bipartite models were proposed to mostly explain the principle of attachments, and ignored the diverse growth speed of nodes of sets in different bipartite networks. In this paper, we propose an evolving bipartite network model with adjustable node scale and hybrid attachment mechanisms, which uses different probability parameters to control the scale of two disjoint sets of nodes and the preference strength of hybrid attachment respectively. The results show that the degree distribution of single set in the proposed model follows a shifted power-law distribution when parameter r and s are not equal to 0, or exponential distribution when r or s is equal to 0. Furthermore, we extend the previous model to a semi-bipartite network model, which embeds more user association information into the internal network, so that the model is capable of carrying and revealing more deep information of each user in the network. The simulation results of two models are in good agreement with the empirical data, which verifies that the models have a good performance on real networks from the perspective of degree distribution. We believe these two models are valuable for an explanation of the origin and growth of bipartite systems that truly exist.
文摘When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect prediction is elaborated through an innovative hybrid machine learning framework. The proposed technique combines an advanced deep neural network architecture with ensemble models such as Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The study evaluates the performance by considering multiple software projects like CM1, JM1, KC1, and PC1 using datasets from the PROMISE Software Engineering Repository. The three hybrid models that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, GaussianNB, Support Vector Classification (SVC), Neural Network), and the Hybrid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC AUC, and precision. The presented work offers valuable insights into the effectiveness of hybrid techniques for cross-project defect prediction, providing a comparative perspective on early defect identification and mitigation strategies. .
基金The work was supported by the National Natural Science Foundation of China (Grant Nos. 60874087 and 61174151).
文摘In this article, we present a new type of unified dynamic scaling property for synchronizability, which can describe the scaling relationship between dynamic synehronizability and four hybrid ratios under the unified hybrid network theory framework (UHNTF). Our theory results can not only be applied to judge and analyze dynamic synehronizability for most of complex networks associated with the UHNTF, but also we can flexibly adjust and design different hybrid ratios and sealing exponent to meet actual requirement for the dynanfic characteristics of the UHNTF.
基金Supported in part by the National High-Tech Research and Development (863) Program of China (Nos.2008AA01A327 and 2008AA01A329)
文摘The benefit of a two-layer hybrid IP/MPLS (multi-protocol label switching) over a wavelength division multiplexing network has been analyzed considering both the cost and different grooming policies. A detailed cost and performance analysis of hybrid networks is done for three different grooming policies. The hybrid network cost is compared with that of an opaque network for equal traffic demand and equal blocking probability of dynamic requests of label switched paths. An algorithm is given to design optimum hybrid nodes for different grooming policies to provide the desired blocking probability for a given number of dynamic connection requests. The results show that all three applied grooming policies (IP layer first, optical layer first, and one hop first) result in lower costs of the hybrid network architecture than for the opaque network. In addition, an adaptive one hop first method is given to improve the best of the applied grooming policies, which limits grooming in heavily loaded hybrid nodes to achieve load balancing. The simulation resuits show that the new policy significantly reduces the overall blocking probability.
基金Projects(61401476,61201166)supported by the National Natural Science Foundation of China
文摘Most of studies on network capacity are based on the assumption that all the nodes are uniformly distributed, which means that the networks are characterized by homogeneity. However, many realistic networks exhibit inhomogeneity due to natural and man-made reasons. In this work, the capacity of inhomogeneous hybrid networks with directional antennas for the first time is studied. By setting different node distribution probabilities, the whole network can be devided into dense cells and sparse cells. On this basis, an inhomogeneous hybrid network model is proposed. The network can exhibit significant inhomogeneity due to the coexistence of two types of cells. Then, we derive the network capacity and maximize the capacity under different channel allocation schemes. Finally, how the network parameters influence the network capacity is analyzed. It is found that if there are plenty of base stations, the per-node throughput can achieve constant order, and if the beamwidth of directional antenna is small enough, the network capacity can scale.
基金supported by the National Natural Science Foundation of China ( 61602051)the Fundamental Research Funds for the Central Universities ( 2017RC11)
文摘Network virtualization provides a powerful way of sharing substrate networks. Efficient allocation of network resources for multiple virtual networks( VNs) has always been a challenging task. Especially under the everincreasing demand of customized VN requests,many problems arise as network conditions change constantly.Particularly with the emergance of resource conflict alongside the development of VNs,service provider( SP) needs to provide a faster and more effective solution. Recently,software defined network( SDN) has emerged as a new networking paradigm,SDN’s centralized control and customizable routing features present new opportunities for convenient and flexible embedding VNs in the network. However,due to the limitations of SDN,replacing all legacy devices in current operational networks by SDN-enabled switches in a short span of time is impractical.Thus,in our study,we focus on the scenario of VN embedding( VNE) in software-defined hybrid networks. In this work,first of all,we propose partially deploying SDN nodes; and then,we use the characteristics of SDN to allocate resources for VN requests,and redirect the path for requests conflict in hybrid SDN network. We formulate the problems and provide simple algorithms to solve them. Simulation results show that our scheme has high ratio in responsiveness and acceptance.
基金This study was supported by the National Natural Science Foundation of China(51772283,22072140)the Fundamental Research Funds for the Central Universities(WK2060000032).
文摘Because of its high theoretical capacity,transition metal sulfides have always been regarded as promising anode materials for potas-slum-ion batteries.However,It is difficult for us to make use of transition metal sulfides due to their low conductivity,poor ionic dif-fusivity,sluggish reaction kinetics and severe volume expansion.Here,we developed a novel carbon-coated CoSx@CNT material with carbon nanotubes inter-connected(CCS@CNT),which shows an excellent potassium storage performance with a specific capacity of 550 mA·h·g^(-1) under the current of 50 mA·g^(-1) and 296 mA·hg^(-1) at 1000 mA·g-1.The carbon layer can effectively alleviate volume ex-pansion during charging and discharging process.And this special structure of inter-connected hybrid networks with CNTs greatly improves the electron transport,ion diffusion coefficient and reaction kinetics of the material.