To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources i...To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes.展开更多
In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user syste...In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.展开更多
This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU)....This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU). The metric 'bits per joule', which captures the effect of energy overhead in spectrum sensing, is adopted to evaluate energy-efficiency capacity. We first formulize the tradeoff between energy-efficiency capacity and spectrum sensing as an optimization problem with mixture constraint of sensing time and detection threshold. Under some certain condition on the domain of detection threshold, i.e. in which we can't improve energy-efficiency capacity through increasing the detection probability, the original optimization problem can be reduced to a new unconstrained one, which only relates to sensing time. Then the existence and uniqueness of optimal sensing time to achieve maximum energy-efficiency capacity are discussed and a low-complexity algorithm is proposed to obtain the optimal solution. Finally, numerical simulation is performed to verify the theoretical analysis results. The simulation results indicate that hybrid spectrum sharing is remarkably beneficial to energy-efficient transmission in cognitive radio networks (CRN). And the proposed algorithm can quickly converge to the optimal solution.展开更多
By the flexible redefinition of frequency-occupation and frequency-collision event, the frequency-(collision) probability of hybrid(DS/FH) spread spectrum network is analyzed. This probability is based on the simultan...By the flexible redefinition of frequency-occupation and frequency-collision event, the frequency-(collision) probability of hybrid(DS/FH) spread spectrum network is analyzed. This probability is based on the simultaneous transmission number threshold and is discussed in synchronous and asynchronous circumstances respectively. And then, the network throughput based on the packet correct reception probability is analyzed. Two models which have finite and infinite population respectively is discussed. At last, the numerical results are given.展开更多
A perpendicular neutral particle analyzer (NPA) is used on HT-7 tokamak experiment to provide the measurements of neutral particle flux and ion temperature. The measured results were compared with calculated data by ...A perpendicular neutral particle analyzer (NPA) is used on HT-7 tokamak experiment to provide the measurements of neutral particle flux and ion temperature. The measured results were compared with calculated data by Monte-carlo method for ohmic heating. In lower hybrid current drive (LHCD) experiments, the ion heating of LHCD was identified. The chargeexchange neutral particle flux enhanced was observed. The energy spectrum clearly showed a high-energy ions tail. The bulk ion temperature increased by 0.4-0.5 keV after the onset of LHCD. Efficient ion heating of 1 eV. kW-1 was obtained.展开更多
The LHCD antenna that will be used in LH-2A is the original one used in LH-1M, which will be modified. We measured the feature of the antenna, including the reflection of main waveguide, VSWR, the phase shift between ...The LHCD antenna that will be used in LH-2A is the original one used in LH-1M, which will be modified. We measured the feature of the antenna, including the reflection of main waveguide, VSWR, the phase shift between the adjacent sub-waveguides and so on. The paper describes the measured results and spectrum calculation based on the measured parameters. From the works we can assess our antennas correctly, which will be useful in LHCD experiment on HL-2A in the years to come.展开更多
In this study, multi-information including spectrum, high-speed photograph and electrical signal was adopted to explore the coupling mechanism of alternate burning in laser-twin-arc welding process. Laser provides a c...In this study, multi-information including spectrum, high-speed photograph and electrical signal was adopted to explore the coupling mechanism of alternate burning in laser-twin-arc welding process. Laser provides a conductive, stable plasma channel for arcs. Plasma radiation strengthened especially in the center of the arc after hybrid. High temperature plasma erupting from keyhole provides an upward reacting force which can prevent droplet from transfer. The charged particles consisted in high temperature plasma reduce the voltage that maintains arc ignition or burning. The results show that laser can influence the arc shape, prevent droplet transfer, reduce resistivity and stabilize arcs.展开更多
The vectorial structure of an optical field with hybrid states of polarization (SOP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal ...The vectorial structure of an optical field with hybrid states of polarization (SOP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions.展开更多
Two new ethoxycarbonylmethyl viologen induced metal halide-based hybrids,(Ae V)(BiI)(DMF)(1)and(Ae V)(CoCl)(2)(AeV=N,N?-bis(ethoxycarbonylmethyl)-4,4?-bipyridinium)have been synthesized and structurally determined by ...Two new ethoxycarbonylmethyl viologen induced metal halide-based hybrids,(Ae V)(BiI)(DMF)(1)and(Ae V)(CoCl)(2)(AeV=N,N?-bis(ethoxycarbonylmethyl)-4,4?-bipyridinium)have been synthesized and structurally determined by X-ray diffraction method.Under the direction of a new template AeV,the(BiI)tetramer constructed from four edge-sharing BiIoctahedra(for 1)and(CoCl)mono-nuclear(for 2)were obtained.Furthermore,C–H···O and C–H···X(X=I,Cl)hydrogen bonds contribute to the extension of structures from 0-D to 1-D chains.Their energy band gaps of 2.18 and 2.41 eV indicate their semiconductor properties,and the photoluminescence was detected on 1.Interestingly,2 exhibits good photocurrent response behavior.Electronic structure analysis was executed to correlate the structure/property.展开更多
Hybrid direct sequence and slow frequency hopping spread spectrum multiple access systems (Hybrid DS/SFH SSMA) operating through nonselective slow Rayleigh fading channels was investigated. Multipath and Multiple acce...Hybrid direct sequence and slow frequency hopping spread spectrum multiple access systems (Hybrid DS/SFH SSMA) operating through nonselective slow Rayleigh fading channels was investigated. Multipath and Multiple access interference was taken into account. Expressions of the average error probability for the system were derived. Analytical and numerical results on the average probability of error were presented for the system examined. Random signature sequences and hopping patterns were employed for the system. The numerical results show the effects of the value of M for M ary frequency shift keying (MFSK) modulation and Reed Solomon (RS) coding on the system’s performance. The comparison between RS coded system and noncode system shows that error correction coding is essential to improve the system’s performance.展开更多
基金the National Natural Science Foundation of China(Grant No.61971057).
文摘To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes.
基金supported in part by the National Natural Science Foundation of China for Young Scholars under Grant No.61701167Young Elite Backbone Teachers in Blue and Blue Project of Jiangsu Province, China
文摘In order to improve the energy efficiency(EE)in cognitive radio(CR),this paper investigates the joint design of cooperative spectrum sensing time and the power control optimization problem for the secondary user systems to achieve the maximum energy efficiency in a cognitive network based on hybrid spectrum sharing,meanwhile considering the maximum transmit power,user quality of service(QoS)requirements,interference limitations,and primary user protection.The optimization of energy efficient sensing time and power allocation is formulated as a non-convex optimization problem.The Dinkelbach’s method is adopted to solve this problem and to transform the non-convex optimization problem in fractional form into an equivalent optimization problem in the form of subtraction.Then,an iterative power allocation algorithm is proposed to solve the optimization problem.The simulation results show the effectiveness of the proposed algorithms for energy-efficient resource allocation in the cognitive network.
基金supported by the National Basic Research Program of China (2009CB320401)the National Key Scientific and Technological Project of China (2012ZX03004005-002)+1 种基金the Fundamental Research Funds for the Central Universities BUPT2011RCZJ018Research Funds of Doctoral Program of Higher Education of China (20090005110003)
文摘This paper investigates the tradeoff between energy-efficiency capacity and spectrum sensing under hybrid spectrum sharing model, where the spectrum sharing method is based on sensing results of secondary user (SU). The metric 'bits per joule', which captures the effect of energy overhead in spectrum sensing, is adopted to evaluate energy-efficiency capacity. We first formulize the tradeoff between energy-efficiency capacity and spectrum sensing as an optimization problem with mixture constraint of sensing time and detection threshold. Under some certain condition on the domain of detection threshold, i.e. in which we can't improve energy-efficiency capacity through increasing the detection probability, the original optimization problem can be reduced to a new unconstrained one, which only relates to sensing time. Then the existence and uniqueness of optimal sensing time to achieve maximum energy-efficiency capacity are discussed and a low-complexity algorithm is proposed to obtain the optimal solution. Finally, numerical simulation is performed to verify the theoretical analysis results. The simulation results indicate that hybrid spectrum sharing is remarkably beneficial to energy-efficient transmission in cognitive radio networks (CRN). And the proposed algorithm can quickly converge to the optimal solution.
文摘By the flexible redefinition of frequency-occupation and frequency-collision event, the frequency-(collision) probability of hybrid(DS/FH) spread spectrum network is analyzed. This probability is based on the simultaneous transmission number threshold and is discussed in synchronous and asynchronous circumstances respectively. And then, the network throughput based on the packet correct reception probability is analyzed. Two models which have finite and infinite population respectively is discussed. At last, the numerical results are given.
文摘A perpendicular neutral particle analyzer (NPA) is used on HT-7 tokamak experiment to provide the measurements of neutral particle flux and ion temperature. The measured results were compared with calculated data by Monte-carlo method for ohmic heating. In lower hybrid current drive (LHCD) experiments, the ion heating of LHCD was identified. The chargeexchange neutral particle flux enhanced was observed. The energy spectrum clearly showed a high-energy ions tail. The bulk ion temperature increased by 0.4-0.5 keV after the onset of LHCD. Efficient ion heating of 1 eV. kW-1 was obtained.
文摘The LHCD antenna that will be used in LH-2A is the original one used in LH-1M, which will be modified. We measured the feature of the antenna, including the reflection of main waveguide, VSWR, the phase shift between the adjacent sub-waveguides and so on. The paper describes the measured results and spectrum calculation based on the measured parameters. From the works we can assess our antennas correctly, which will be useful in LHCD experiment on HL-2A in the years to come.
文摘In this study, multi-information including spectrum, high-speed photograph and electrical signal was adopted to explore the coupling mechanism of alternate burning in laser-twin-arc welding process. Laser provides a conductive, stable plasma channel for arcs. Plasma radiation strengthened especially in the center of the arc after hybrid. High temperature plasma erupting from keyhole provides an upward reacting force which can prevent droplet from transfer. The charged particles consisted in high temperature plasma reduce the voltage that maintains arc ignition or burning. The results show that laser can influence the arc shape, prevent droplet transfer, reduce resistivity and stabilize arcs.
基金supported by the Zhejiang Provincial Natural Science Foundation,China(Grant Nos.LZ17A040001 and LY16A040014)the National Natural Science Foundation of China(Grant Nos.11574271 and 11574272)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministrythe Science Research Foundation of Zhejiang Sci-Tech University(ZSTU),China(Grant No.14062078-Y)
文摘The vectorial structure of an optical field with hybrid states of polarization (SOP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions.
基金supported by the Science and Technology Funding Project of Fujian Provincial Department of Transportation(No.201337)
文摘Two new ethoxycarbonylmethyl viologen induced metal halide-based hybrids,(Ae V)(BiI)(DMF)(1)and(Ae V)(CoCl)(2)(AeV=N,N?-bis(ethoxycarbonylmethyl)-4,4?-bipyridinium)have been synthesized and structurally determined by X-ray diffraction method.Under the direction of a new template AeV,the(BiI)tetramer constructed from four edge-sharing BiIoctahedra(for 1)and(CoCl)mono-nuclear(for 2)were obtained.Furthermore,C–H···O and C–H···X(X=I,Cl)hydrogen bonds contribute to the extension of structures from 0-D to 1-D chains.Their energy band gaps of 2.18 and 2.41 eV indicate their semiconductor properties,and the photoluminescence was detected on 1.Interestingly,2 exhibits good photocurrent response behavior.Electronic structure analysis was executed to correlate the structure/property.
文摘Hybrid direct sequence and slow frequency hopping spread spectrum multiple access systems (Hybrid DS/SFH SSMA) operating through nonselective slow Rayleigh fading channels was investigated. Multipath and Multiple access interference was taken into account. Expressions of the average error probability for the system were derived. Analytical and numerical results on the average probability of error were presented for the system examined. Random signature sequences and hopping patterns were employed for the system. The numerical results show the effects of the value of M for M ary frequency shift keying (MFSK) modulation and Reed Solomon (RS) coding on the system’s performance. The comparison between RS coded system and noncode system shows that error correction coding is essential to improve the system’s performance.