Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with stron...Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with strong randomness.In this paper,the working mechanism of earthwork dynamic allocation system is analyzed comprehensively and a solution to fuzzy earthwork dynamic allocation is proposed on the basis of uncertain factors in the earthwork allocation of a hydropower project.Under the premise of actual situation and the experience of the construction site,an all-coefficient-fuzzy linear programming mathematical model with fuzzy parameters and constraints for earthwork allocation is established according to the structure unit weighted ranking criteria.In this way,the deficiency of certain allocation model can be overcome.The application results indicate that the proposed method is more rational compared with traditional earthwork allocation.展开更多
In China,an increasing number of high concrete face rockfill dams(CFRDs)are located in high intensity earthquake zones,some of which are close to the seismic fault line.Recordings suggest that near-fault ground motion...In China,an increasing number of high concrete face rockfill dams(CFRDs)are located in high intensity earthquake zones,some of which are close to the seismic fault line.Recordings suggest that near-fault ground motions are characterized by large one-sided velocity pulses.The conventional dynamic analysis of dams,however,neglects the features of strong ground movements.In this study,under different ground motion levels some numerical dynamic studies considering the one-sided broadband pulses of near-fault earthquakes are presented for CFRDs based on a generalized plasticity model for rockfill materials.The results indicate that the displacements of dam crest corresponding to positive and reverse input of near-fault ground motion make a significant difference,while the displacements of the dam crest under artificial seismic waves are similar.Furthermore,using the horizontal and vertical components as simultaneous excitations near the faults,the displacements of the dam crest before and after reversing the motion produce a larger difference than that using a single component.More importantly,the difference of horizontal displacements of the dam crest caused by polarity reversal of near-fault ground motions increases with the increase of earthquake intensity.Due to the randomness and uncertainties of earthquakes,using a stochastic near-field motion input as excitation without considering the polarity(i.e.,positive vs reversed waveform),does not necessarily obtain a conservative result.展开更多
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘Due to the complexity of earthwork allocation system for the construction of high concrete face rockfill dam,traditional allocation and planning are not able to function properly in the construction process with strong randomness.In this paper,the working mechanism of earthwork dynamic allocation system is analyzed comprehensively and a solution to fuzzy earthwork dynamic allocation is proposed on the basis of uncertain factors in the earthwork allocation of a hydropower project.Under the premise of actual situation and the experience of the construction site,an all-coefficient-fuzzy linear programming mathematical model with fuzzy parameters and constraints for earthwork allocation is established according to the structure unit weighted ranking criteria.In this way,the deficiency of certain allocation model can be overcome.The application results indicate that the proposed method is more rational compared with traditional earthwork allocation.
基金National Natural Science Foundation of China under Grant Nos.U1965206,51779034Technology Project of China Huaneng Group Under Grant No.HNKJ18-H25。
文摘In China,an increasing number of high concrete face rockfill dams(CFRDs)are located in high intensity earthquake zones,some of which are close to the seismic fault line.Recordings suggest that near-fault ground motions are characterized by large one-sided velocity pulses.The conventional dynamic analysis of dams,however,neglects the features of strong ground movements.In this study,under different ground motion levels some numerical dynamic studies considering the one-sided broadband pulses of near-fault earthquakes are presented for CFRDs based on a generalized plasticity model for rockfill materials.The results indicate that the displacements of dam crest corresponding to positive and reverse input of near-fault ground motion make a significant difference,while the displacements of the dam crest under artificial seismic waves are similar.Furthermore,using the horizontal and vertical components as simultaneous excitations near the faults,the displacements of the dam crest before and after reversing the motion produce a larger difference than that using a single component.More importantly,the difference of horizontal displacements of the dam crest caused by polarity reversal of near-fault ground motions increases with the increase of earthquake intensity.Due to the randomness and uncertainties of earthquakes,using a stochastic near-field motion input as excitation without considering the polarity(i.e.,positive vs reversed waveform),does not necessarily obtain a conservative result.