Practical stabilities for linear fractional impulsive hybrid systems are investigated in detail.The transformation from a linear fractional differential system to a fractional impulsive hybrid system is interpreted.Wi...Practical stabilities for linear fractional impulsive hybrid systems are investigated in detail.The transformation from a linear fractional differential system to a fractional impulsive hybrid system is interpreted.With the help of the Mittag-Leffler functions for matrix-type,several practical stability criteria for fractional impulsive hybrid systems are derived.Finally,a numerical example is provided to illustrate the effectiveness of the results.展开更多
In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a ...In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.展开更多
This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usua...This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties. Finally, three examples are given to illustrate the reduced conservatism of the stability criteria.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is ...The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is generally conservative under the small gain condition. The reason forthe norm di?erence by the lifting is that the state transition operator in the lifted system is zero inthis case. A new approach to the robust stability analysis is proposed. It is to use an equivalentdiscrete-time uncertainty to replace the continuous-time uncertainty. Then the general discretizedmethod can be used for the robust stability problem, and it is not conservative. Examples are givenin the paper.展开更多
Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for ...Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ...Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.展开更多
The exponential stability of a class of switched systems containing stableand unstable subsystems with impulsive effect is analyzed by using the matrix measure concept andthe average dwell-time approach. It is shown t...The exponential stability of a class of switched systems containing stableand unstable subsystems with impulsive effect is analyzed by using the matrix measure concept andthe average dwell-time approach. It is shown that if appropriately a large amount of the averagedwell-time and the ratio of the total activation time of the subsystems with negative matrix measureto the total activation time of the subsystems with nonnegative matrix measure is chosen, theexponential stability of a desired degree is guaranteed.Using the proposed switching scheme, westudied the robust exponential stability for a class of switched systems with impulsive effect andstructure perturbations.Simulations validate the main results.展开更多
This paper describes the transmission capability of Tian-Guang AC and DC hybrid system, as well as various operational effects on the transmission capability, such as HVDC modulation, AC voltage level and generating r...This paper describes the transmission capability of Tian-Guang AC and DC hybrid system, as well as various operational effects on the transmission capability, such as HVDC modulation, AC voltage level and generating reserves. The study has shown that when both AC and DC systems operated in parallel, this system has higher transmission capability than operated separately, thus it satisfies stability criterion after the project put into operation.展开更多
In this paper, we consider a nonlinear hybrid dynamic (NHD) system to describe fedbatch culture where there is no analytical solutions and no equilibrium points. Our goal is to prove the strong stability with respec...In this paper, we consider a nonlinear hybrid dynamic (NHD) system to describe fedbatch culture where there is no analytical solutions and no equilibrium points. Our goal is to prove the strong stability with respect to initial state for the NHD system. To this end, we construct corresponding linear variational system (LVS) for the solution of the NHD system, also prove the boundedness of fundamental matrix solutions for the LVS. On this basis, the strong stability is proved by such boundedness.展开更多
[Objective] This study aimed to analyze the influence of five cultivation factors: sowing date, plant density, nitrogen fertilizer amount, phosphate fertilizer amount and potash fertilizer amount on oil quality and ...[Objective] This study aimed to analyze the influence of five cultivation factors: sowing date, plant density, nitrogen fertilizer amount, phosphate fertilizer amount and potash fertilizer amount on oil quality and stability of Brassica napus hybrids. [Method] Statistical analysis was carried out based on the data from previous studies and our work. [Result] Sowing date had no significant influence on oil quality and stability of B. napus hybrids. The plant density shared a positive correlation with 18-C fatty acid (FA) content, unsaturated fatty acid (UFA) content, total content of linoleic acid and linolenic acid, index of unsaturated fatty acid (IUFA), so a large plant density can improve the oil quality (by increasing18-C FA content, UFA content, total content of linoleic acid and linolenic acid), but reduce the oil stability (by increasing IUFA). The amount of nitrogen fertilizer had no significant influence on the contents of 18-C FA and UFA, but significant positive correlations with the total content of linoleic acid and linolenic acid and IUFA. So, the total content of linoleic acid and linolenic acid can be reduced by increasing nitrogen amount, meanwhile the oil stability was also decreased. Phosphate fertilizer amount did not affect 18-C FA significantly, but was negatively correlated with the UFA content, total content of linoleic acid and linolenic acid, and IUFA. So, increasing the amount of applied phosphate fertilizer can reduce UFA content, total content of linoleic acid and linolenic acid, thereby improving oil stability. Potash fertilizer had no significant influence on the IUFA, a significant positive correlation with 18-C FA content, an insignificant positive correlation with the the UFA content, and a negative correlation with the total content of linoleic acid and linolenic acid. The oil content of rapeseed shared an extremely significant positive correlation with 18-C FA content and UFA content, an negative correlation with the total content of linoleic acid and linolenic acid, and no significant correlation with IUFA. [Conclusion] This study identified the effects of five main cultivation factors on oil quality and stability of B. napus hybrids, and the correlations of oil content with 18-C FA content, UFA content, total content of linoleic acid and linolenic acid, and IUFA.展开更多
The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth conditio...The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth condition is replaced by polynomial growth conditions, under which there exists a unique global solution and the solution is almost surely exponentially stable. On the basis of a series of lemmas, the paper establishes a new criterion on convergence in probability of the Euler-Maruyama approximate solution. The criterion is very general so that many highly nonlinear stochastic pantograph equations can obey these conditions. A highly nonlinear example is provided to illustrate the main theory.展开更多
China's Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the s...China's Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the strategies for super hybrid rice production. The results of our studies show that rice yield potential has been increased by 12% in super hybrid cultivars as compared with ordinary hybrid and inbred cultivars. The higher grain yields in super hybrid rice cultivars are attributed to larger panicle size coupled with higher biomass production or higher harvest index. However, grain yields in super hybrid rice cultivars vary widely among locations depending on soil and climatic factors. Therefore, it is important to tailor target yield to local conditions in super hybrid rice production. The target yield for super hybrid rice production can be determined by the average yield method or the regression model method. Improving soil quality is critical to achieving the target yield in super hybrid rice production. Favorable crop rotations such as rice-oilseed rape and novel soil management practices, such as biochar addition, are effective approaches to improve soil quality. It is needed to develop simplified cultivation tech- nologies for super hybrid rice to meet the changes in socioeconomic environments during the period of transition. There are such technologies as no-tillage direct seeding and mechanized transplanting at high hill density with single seedling per hill.展开更多
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and adde...It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.展开更多
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a...A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.展开更多
Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design ...Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design parameters (such as the cable sag, length of suspension portion, cable plane arrangement, subsidiary piers in side spans, the deck form, etc.) on the aerodynamic stability of the bridge are analytically investigated. The key design parameters, which significantly influence the aerodynamic stability of CSS hybrid bridges, are pointed out, and based on the wind stability the favorable structural system of CSS hybrid bridges is discussed.展开更多
Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely ...Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely applied because of the high power density of supercapacitors. In this study, we design a hybrid powertrain system containing two porous carbon electrode-based supercapacitor modules in parallel and one lithium ion battery pack. With the construction of the testing station, the performance and stability of the used supercapacitor modules are investigated in correlation with the structure of the supercapacitor and the nature of the electrode materials applied. It has been shown that the responding time for voltage vibration from 20 V to 48.5 V during charging or discharging process decreases from about 490 s to 94 s with the increase in applied current from 20 A to 100 A. The capacitance of the capacitor modules is nearly independent on the applied current. With the designed setup, the energy efficiency can reach as high as 0.99. The results described here provide a guidance for material selection of supercapacitors and optimized controlling strategy for hybrid power system applied in electric vehicles.展开更多
In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression f...In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects.The polynomial load modelling or ZIP(constant impedances(Z),Constant Current(I)and Constant active power(P))is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security.The process of finding the severity of the line using a Hybrid Line Stability Ranking Index(HLSRI)is used for assisting the concepts of machine learning with J48 algorithm,infers the superior affected lines by adopting the IEEE standards in concern to be compensated in maintaining the power system stability.The simulation is performed in the WEKA environment and deals with the supervisor learning in order based on severity to ensure the safety of power system.The Unified Power Flow Controller(UPFC),facts devices for the purpose of compensating the losses by maintaining the voltage characteristics.The finite element analysis findings are compared with the existing procedures and numerical equations for authentications.展开更多
基金Natural Science Foundation of Shanghai China (No. 10ZR1400100)
文摘Practical stabilities for linear fractional impulsive hybrid systems are investigated in detail.The transformation from a linear fractional differential system to a fractional impulsive hybrid system is interpreted.With the help of the Mittag-Leffler functions for matrix-type,several practical stability criteria for fractional impulsive hybrid systems are derived.Finally,a numerical example is provided to illustrate the effectiveness of the results.
基金funded by the National Natural Science Foundation of China(52222704 and 52177107).
文摘In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.
基金supported by the National Natural Science Foundation of China(61374090)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Provincethe Taishan Scholarship Project of Shandong Province
文摘This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties. Finally, three examples are given to illustrate the reduced conservatism of the stability criteria.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.
文摘The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is generally conservative under the small gain condition. The reason forthe norm di?erence by the lifting is that the state transition operator in the lifted system is zero inthis case. A new approach to the robust stability analysis is proposed. It is to use an equivalentdiscrete-time uncertainty to replace the continuous-time uncertainty. Then the general discretizedmethod can be used for the robust stability problem, and it is not conservative. Examples are givenin the paper.
基金supported by the National Natural Science Foundation of China (60974139)
文摘Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
基金supported by the Joint Research Fund in Smart Grid(U23B20120)under cooperative agreement between the National Natural Science Foundation of China and State Grid Corporation of China。
文摘Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station.
文摘The exponential stability of a class of switched systems containing stableand unstable subsystems with impulsive effect is analyzed by using the matrix measure concept andthe average dwell-time approach. It is shown that if appropriately a large amount of the averagedwell-time and the ratio of the total activation time of the subsystems with negative matrix measureto the total activation time of the subsystems with nonnegative matrix measure is chosen, theexponential stability of a desired degree is guaranteed.Using the proposed switching scheme, westudied the robust exponential stability for a class of switched systems with impulsive effect andstructure perturbations.Simulations validate the main results.
文摘This paper describes the transmission capability of Tian-Guang AC and DC hybrid system, as well as various operational effects on the transmission capability, such as HVDC modulation, AC voltage level and generating reserves. The study has shown that when both AC and DC systems operated in parallel, this system has higher transmission capability than operated separately, thus it satisfies stability criterion after the project put into operation.
基金This work was supported by the National Science Foundation for the Youth of China (Grant Nos. 11501574, 11401073 and 11701063), the National Natural Science Foundation of China (Grant Nos. 11771008, 61673083 and 61773086), the National Science Foundation for the Tianyuan of China (Grant No. 11626053), the Natural Science Foundation of Shandong Province in China (Grant No.: ZR2015FM014, ZR2015AL010 and ZR2017MA005), the Fundamental Research Funds for the Cen- tral Universities in China (Grant No. DUT16LK07) and the Project funded by China Postdoctoral Science Foundation (Grant No. 2016M601296).
文摘In this paper, we consider a nonlinear hybrid dynamic (NHD) system to describe fedbatch culture where there is no analytical solutions and no equilibrium points. Our goal is to prove the strong stability with respect to initial state for the NHD system. To this end, we construct corresponding linear variational system (LVS) for the solution of the NHD system, also prove the boundedness of fundamental matrix solutions for the LVS. On this basis, the strong stability is proved by such boundedness.
基金Supported by Earmarked Fund for Modern Rapeseed Research System of China(nycytx-00563)High-oil Hybrid Brassica napus Rapeseed Cultivation Technology Research Program of Guizhou Academy of Agricultural Sciences[ZX(2007)015]+3 种基金New High-yield Rapeseed Cultivar Yoyan 599 Cultivation and Promotion Program of Agriculture Department of Guizhou Province[(2009)007]Hybrid Rapeseed Cultivar Youyan 599 Promotion Program of Guizhou Academy of Agricultural Sciences[(2009)030]New High-oil Rapeseed Cultivar Sanbei 98 Cultivation and Promotion Program of Agriculture Department of Guizhou Province[(2010)3087]Earmarked Fund for Modern Rapeseed Research System of Guizhou Province(GZCYTX2013-0802)~~
文摘[Objective] This study aimed to analyze the influence of five cultivation factors: sowing date, plant density, nitrogen fertilizer amount, phosphate fertilizer amount and potash fertilizer amount on oil quality and stability of Brassica napus hybrids. [Method] Statistical analysis was carried out based on the data from previous studies and our work. [Result] Sowing date had no significant influence on oil quality and stability of B. napus hybrids. The plant density shared a positive correlation with 18-C fatty acid (FA) content, unsaturated fatty acid (UFA) content, total content of linoleic acid and linolenic acid, index of unsaturated fatty acid (IUFA), so a large plant density can improve the oil quality (by increasing18-C FA content, UFA content, total content of linoleic acid and linolenic acid), but reduce the oil stability (by increasing IUFA). The amount of nitrogen fertilizer had no significant influence on the contents of 18-C FA and UFA, but significant positive correlations with the total content of linoleic acid and linolenic acid and IUFA. So, the total content of linoleic acid and linolenic acid can be reduced by increasing nitrogen amount, meanwhile the oil stability was also decreased. Phosphate fertilizer amount did not affect 18-C FA significantly, but was negatively correlated with the UFA content, total content of linoleic acid and linolenic acid, and IUFA. So, increasing the amount of applied phosphate fertilizer can reduce UFA content, total content of linoleic acid and linolenic acid, thereby improving oil stability. Potash fertilizer had no significant influence on the IUFA, a significant positive correlation with 18-C FA content, an insignificant positive correlation with the the UFA content, and a negative correlation with the total content of linoleic acid and linolenic acid. The oil content of rapeseed shared an extremely significant positive correlation with 18-C FA content and UFA content, an negative correlation with the total content of linoleic acid and linolenic acid, and no significant correlation with IUFA. [Conclusion] This study identified the effects of five main cultivation factors on oil quality and stability of B. napus hybrids, and the correlations of oil content with 18-C FA content, UFA content, total content of linoleic acid and linolenic acid, and IUFA.
基金support from the National Natural Science Foundation of China(70871046,71171091,71191091)Fundamental Research Funds for the Central Universities(2011QN167)
文摘The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth condition is replaced by polynomial growth conditions, under which there exists a unique global solution and the solution is almost surely exponentially stable. On the basis of a series of lemmas, the paper establishes a new criterion on convergence in probability of the Euler-Maruyama approximate solution. The criterion is very general so that many highly nonlinear stochastic pantograph equations can obey these conditions. A highly nonlinear example is provided to illustrate the main theory.
基金supported by the Earmarked Fund for China Agriculture Research System(CARS-01)
文摘China's Super Hybrid Rice Breeding Program has made significant progress over the past two decades. In this paper, we reviewed our studies on the yield potential and stability in super hybrid rice and discussed the strategies for super hybrid rice production. The results of our studies show that rice yield potential has been increased by 12% in super hybrid cultivars as compared with ordinary hybrid and inbred cultivars. The higher grain yields in super hybrid rice cultivars are attributed to larger panicle size coupled with higher biomass production or higher harvest index. However, grain yields in super hybrid rice cultivars vary widely among locations depending on soil and climatic factors. Therefore, it is important to tailor target yield to local conditions in super hybrid rice production. The target yield for super hybrid rice production can be determined by the average yield method or the regression model method. Improving soil quality is critical to achieving the target yield in super hybrid rice production. Favorable crop rotations such as rice-oilseed rape and novel soil management practices, such as biochar addition, are effective approaches to improve soil quality. It is needed to develop simplified cultivation tech- nologies for super hybrid rice to meet the changes in socioeconomic environments during the period of transition. There are such technologies as no-tillage direct seeding and mechanized transplanting at high hill density with single seedling per hill.
基金State Key Laboratory of Hydroscience and Engineering Under Grant No.2008-TC-2National Natural Science Foundation of China Under Grant No.90510018,50779021 and 90715041
文摘It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
文摘A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems.
基金Project (No.502118) supported by Zhejiang Provincial ScienceFoundation of China
文摘Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design parameters (such as the cable sag, length of suspension portion, cable plane arrangement, subsidiary piers in side spans, the deck form, etc.) on the aerodynamic stability of the bridge are analytically investigated. The key design parameters, which significantly influence the aerodynamic stability of CSS hybrid bridges, are pointed out, and based on the wind stability the favorable structural system of CSS hybrid bridges is discussed.
基金Funded by the National Key Basic Research Development Program of China(973 Plan)(No.2013CB632505)the National Natural Science Foundation of China(51477125)the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘Hybrid power sources have attracted much attention in the electric vehicle area. Particularly, electric-electric hybrid powertrain system consisting of supercapacitor modules and lithium-ion batteries has been widely applied because of the high power density of supercapacitors. In this study, we design a hybrid powertrain system containing two porous carbon electrode-based supercapacitor modules in parallel and one lithium ion battery pack. With the construction of the testing station, the performance and stability of the used supercapacitor modules are investigated in correlation with the structure of the supercapacitor and the nature of the electrode materials applied. It has been shown that the responding time for voltage vibration from 20 V to 48.5 V during charging or discharging process decreases from about 490 s to 94 s with the increase in applied current from 20 A to 100 A. The capacitance of the capacitor modules is nearly independent on the applied current. With the designed setup, the energy efficiency can reach as high as 0.99. The results described here provide a guidance for material selection of supercapacitors and optimized controlling strategy for hybrid power system applied in electric vehicles.
文摘In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects.The polynomial load modelling or ZIP(constant impedances(Z),Constant Current(I)and Constant active power(P))is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security.The process of finding the severity of the line using a Hybrid Line Stability Ranking Index(HLSRI)is used for assisting the concepts of machine learning with J48 algorithm,infers the superior affected lines by adopting the IEEE standards in concern to be compensated in maintaining the power system stability.The simulation is performed in the WEKA environment and deals with the supervisor learning in order based on severity to ensure the safety of power system.The Unified Power Flow Controller(UPFC),facts devices for the purpose of compensating the losses by maintaining the voltage characteristics.The finite element analysis findings are compared with the existing procedures and numerical equations for authentications.