Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to ...Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems.展开更多
A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is...A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.展开更多
Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatica...Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.展开更多
Practical stabilities for linear fractional impulsive hybrid systems are investigated in detail.The transformation from a linear fractional differential system to a fractional impulsive hybrid system is interpreted.Wi...Practical stabilities for linear fractional impulsive hybrid systems are investigated in detail.The transformation from a linear fractional differential system to a fractional impulsive hybrid system is interpreted.With the help of the Mittag-Leffler functions for matrix-type,several practical stability criteria for fractional impulsive hybrid systems are derived.Finally,a numerical example is provided to illustrate the effectiveness of the results.展开更多
Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, ...Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems.展开更多
In this paper, a linear programming method is proposed to solve model predictive control for a class of hybrid systems. Firstly, using the (max, +) algebra, a typical subclass of hybrid systems called max-plus-line...In this paper, a linear programming method is proposed to solve model predictive control for a class of hybrid systems. Firstly, using the (max, +) algebra, a typical subclass of hybrid systems called max-plus-linear (MPL) systems is obtained. And then, model predictive control (MPC) framework is extended to MPL systems. In general, the nonlinear optimization approach or extended linear complementarity problem (ELCP) were applied to solve the MPL-MPC optimization problem. A new optimization method based on canonical forms for max-min-plus-scaling (MMPS) functions (using the operations maximization, minimization, addition and scalar multiplication) with linear constraints on the inputs is presented. The proposed approach consists in solving several linear programming problems and is more efficient than nonlinear optimization. The validity of the algorithm is illustrated by an example.展开更多
This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose...This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system’s ability of handling and learning knowledge.展开更多
The paper shortly reviews the basic direct approaches applied in searching for viable solutions to solar fuel production. These are generally distinguished in molecular and semiconductor(non-molecular)systems, however...The paper shortly reviews the basic direct approaches applied in searching for viable solutions to solar fuel production. These are generally distinguished in molecular and semiconductor(non-molecular)systems, however, hybrid strategies, proposed recently, have also been included. The most promising efforts are considered, highlighting key aspects and emerging critical issues. Special attention is paid to aspects such as electrode architecture, device design, and main differences in the scientific vision and challenges to directly produce solar fuels. This overview could be useful to orientate the readers in the wide panorama of research activities concerning water splitting, natural and artificial photosynthesis, and solar fuel production through the identification of common aspects, specialties and potentialities of the many initiatives and approaches that are developing worldwide in this field with the final aim to meet world energy demand.展开更多
Stretchable hybrid systems have been attracting tremendous attention for their essential role in soft robotics,on-skin electronics,and implantable devices.Both rigid and soft functional modules are typically required ...Stretchable hybrid systems have been attracting tremendous attention for their essential role in soft robotics,on-skin electronics,and implantable devices.Both rigid and soft functional modules are typically required in those devices.Consequently,ensuring stable electrical contact between rigid and soft modules is a vital part.Here,we propose a simple,universal,and scalable strategy for the stretchable hybrid system through a highly precise printable liquid metal particle-based conductor and adhesive fluorine rubber substrate.The properties of liquid metal particle-based conductors could be easily tuned to realize high-precision patterning,large-scale printing,and the ability to print on various substrates.Additionally,the fluorine rubber substrate could form strong interfacial adhesion with various components and materials through simply pressing and heating,hence enabling stable electrical contact.Furthermore,we prepared a stretchable hybrid light-emitting diode(LED)display system and employed it in on-skin visualization of pressure levels,which perfectly combined rigid and soft modules,thus demonstrating the promising potential applications in complex multifunctional stretchable hybrid systems for emerging technologies.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
The transition of the global economy to a low-carbon development path has led to dramatic changes in the organization and functioning of energy markets around the world,where hybrid energy systems(HESs)are one of the ...The transition of the global economy to a low-carbon development path has led to dramatic changes in the organization and functioning of energy markets around the world,where hybrid energy systems(HESs)are one of the decisive active agents.At the same time,a number of problems facing the modern HESs are primarily due to the stochastic nature of the renewable energy they use,require further profound changes not only in the technologies they use and how they manage them,necessary to meet the needs of end consumers and interact with the unified energy system,but also to preserve the ability of the environment to self-heal.In order to make the process of changes more efficient and eco-deep,the article proposes to use and discusses the approach based on service dominant(SD)logic,which opens up new opportunities for solving the problems of HESs.First of all through:the implementation of closer service interaction with other participants in the energy markets,as well as with the environment;a systemically organized process of transforming the“product”economic activity of HESs into a service-dominant one;developing the generalized and engineering models for solving the problems of optimizing the technical and economic indicators of HESs,operation in steady-state and transient modes.The calculations confirm the effectiveness of the proposed approach and its ability to reduce the average daily costs for the system as a whole by 14.7%compared to the costs with a uniform distribution of power between the modules.展开更多
Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, m...Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, many of them are safety-critical, and therefore are required to meet a critical safety standard. Invariant generation plays a central role in the verification and synthesis of hybrid systems. In the previous work, the fourth author and his coauthors gave a necessary and sufficient condition for a semi-algebraic set being an invariant of a polynomial autonomous dynamical system, which gave a confirmative answer to the open problem. In addition, based on which a complete algorithm for generating all semi-algebraic invariants of a given polynomial autonomous hybrid system with the given shape was proposed. This paper considers how to extend their work to non-autonomous dynamical and hybrid systems. Non-autonomous dynamical and hybrid systems are with inputs, which are very common in practice; in contrast, autonomous ones are without inputs. Furthermore, the authors present a sound and complete algorithm to verify semi-algebraic invariants for non-autonomous polynomial hybrid systems. Based on which, the authors propose a sound and complete algorithm to generate all invariants with a pre-defined template.展开更多
This paper investigates symbolic algorithmic analysis of rectangular hybrid systems. To deal with the symbolic reachability problem, a restricted constraint system called hybrid zone is formalized for the representati...This paper investigates symbolic algorithmic analysis of rectangular hybrid systems. To deal with the symbolic reachability problem, a restricted constraint system called hybrid zone is formalized for the representation and manipulation of rectangular automata state-spaces. Hybrid zones are proved to be closed over symbolic teachability operations of rectangular hybrid systems. They are also applied to model-checking procedures for verifying some important classes of timed computation tree logic formulas. To represent hybrid zones, a data structure called difference constraint matrix is defined. These enable us to deal with the symbolic algorithmic analysis of rectangular hybrid systems in an efficient way.展开更多
In this study,we extend traditional(single-target)hybrid systems to multi-target hybrid systems with a focus on the multi-maneuvering-target tracking system.This system consists of a continuous state,a discrete and sw...In this study,we extend traditional(single-target)hybrid systems to multi-target hybrid systems with a focus on the multi-maneuvering-target tracking system.This system consists of a continuous state,a discrete and switchable state,and a discrete,time-constant,and unique state.By defining a new generalized labeled multi-Bernoulli density,we prove that it is closed under the Chapman-Kolmogorov prediction and Bayes update for multi-target hybrid systems.In other words,we provide the exact derivation of a solution to this system,i.e.,the multi-model generalized labeled multi-Bemoulli filter,which has been developed without strict proof.展开更多
For symbolic reachability analysis of rectangular hybrid systems, the basic issue is finding a formal structure to represent and manipulate its infinite state spaces. Firstly, this structure must be closed to the reac...For symbolic reachability analysis of rectangular hybrid systems, the basic issue is finding a formal structure to represent and manipulate its infinite state spaces. Firstly, this structure must be closed to the reachability operation which means that reachable states from states expressed by this structure can be presented by it too. Secondly, the operation of finding reachable states with this structure should take as less computation as possible. To this end, a constraint system called rectangular zone is formalized, which is a conjunction of fixed amount of inequalities that compare fixed types of linear expressions with two variables to rational numbers. It is proved that the rectangular zone is closed to those reachability operations-intersection, elapsing of time and edge transition. Since the number of inequalities and the linear expression of each inequality is fixed in rectangular zones, so to obtain reachable rectangular zones, it just needs to change the rational numbers to which these linear expressions need to compare. To represent rectangular zones and unions of rectangular zones, a data structure called three dimensional constraint matrix(TDCM) and a BDD-like structure rectangular hybrid diagram(RHD) are introduced.展开更多
In safety-critical systems,it is desirable to automatically synthesize controllers for complex tasks with guaranteed safety and correctness.Although much progress has been made through controller synthesis from tempor...In safety-critical systems,it is desirable to automatically synthesize controllers for complex tasks with guaranteed safety and correctness.Although much progress has been made through controller synthesis from temporal logic speci-cations,existing approaches generally require conservative assumptions and do not scale well with system dimensionality.We propose a scalable,provably complete algorithm that synthesizes continuous trajectories for hybrid systems to satisfy temporal logic speci-cations.Speci-cally,we harness highly e±cient Boolean satis-ability(SAT)and Linear Programming(LP)solvers to-nd trajectories that satisfy nonconvex Signal Temporal Logic(STL)speci-cations for a class of high dimensional hybrid systems.The proposed design algorithms are proven sound and complete,and are validated in simulation experiments.展开更多
Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently hi...Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently high to make solar thermal attractive for generating electricity. The paper presents two conceptual coal-fired power station designs in which a solar sub-system augments heat to the feed heaters or to the boiler. The thermal and economic analyses showed enhanced system performance which indicates that solar power could be embedded into existing fossil fuel plants or new power stations. Integrating solar energy with existing or new fossil fuel based power plants could reduce the cost of stand-alone solar thermal power stations, reduce CO2 emissions and produce experience necessary to operate a full scale solar thermal electricity generation facility.展开更多
Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite sol...Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite solar cells(PSCs) are synthesized by facile one-step reaction in good yield over 75%. DTF unit as electron donor can enhance the electron donating ability and the fusion of benzenic ring of TPA with DTF unit may lead to reinforced intermolecular interactions in the solid state. In addition,WH-2 and WH-3 exhibit a pyramid shape containing partial planarity and quasi three-dimensionality features, which is also conducive to enhancing the π-π stacking of molecules in the solid state. The above-mentioned structural characteristics make the two HTMs have good hole mobilities. As a result,WH-2 and WH-3 obtained the high intrinsic hole mobilities of 4.69 × 10^(-4)and 2.18 × 10^(-3)cm^(2)V^(-1)s^(-1)respectively. Finally, the power conversion efficiencies(PCEs) of PSCs with WH-2 and WH-3 as cost-effective dopant-free HTMs are 15.39% and 19.22% respectively and the PCE of PSC with WH-3 is on a par with that of PSC with Li-TFSI/t-BP doped Spiro-OMe TAD(19.67%).展开更多
Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for ...Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.展开更多
Measure synchronization in hybrid quantum-classical systems is investigated in this paper.The dynamics of the classical subsystem is described by the Hamiltonian equations,while the dynamics of the quantum subsystem i...Measure synchronization in hybrid quantum-classical systems is investigated in this paper.The dynamics of the classical subsystem is described by the Hamiltonian equations,while the dynamics of the quantum subsystem is governed by the Schr¨odinger equation.By increasing the coupling strength in between the quantum and classical subsystems,we reveal the existence of measure synchronization in coupled quantum-classical dynamics under energy conservation for the hybrid systems.展开更多
文摘Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems.
文摘A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.
基金the Major Program of National Natural Science Foundation of China(51490683).
文摘Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.
基金Natural Science Foundation of Shanghai China (No. 10ZR1400100)
文摘Practical stabilities for linear fractional impulsive hybrid systems are investigated in detail.The transformation from a linear fractional differential system to a fractional impulsive hybrid system is interpreted.With the help of the Mittag-Leffler functions for matrix-type,several practical stability criteria for fractional impulsive hybrid systems are derived.Finally,a numerical example is provided to illustrate the effectiveness of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61303039 and 61201253)Chunying Fellowship,and Fundamental Research Funds for the Central Universities,China(Grant No.2682014CX095)
文摘Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems [Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems.
基金This work was supported by the National Science Foundation of China (No. 60474051)the program for New Century Excellent Talents in University of China (NCET).
文摘In this paper, a linear programming method is proposed to solve model predictive control for a class of hybrid systems. Firstly, using the (max, +) algebra, a typical subclass of hybrid systems called max-plus-linear (MPL) systems is obtained. And then, model predictive control (MPC) framework is extended to MPL systems. In general, the nonlinear optimization approach or extended linear complementarity problem (ELCP) were applied to solve the MPL-MPC optimization problem. A new optimization method based on canonical forms for max-min-plus-scaling (MMPS) functions (using the operations maximization, minimization, addition and scalar multiplication) with linear constraints on the inputs is presented. The proposed approach consists in solving several linear programming problems and is more efficient than nonlinear optimization. The validity of the algorithm is illustrated by an example.
文摘This paper discusses the necessity of building IDSS on hybrid systems, and adopts XML technology to manage isomeric knowledge in hybrid systems. The paper proposes a new architecture of hybrid systems based IDSS whose core system is isomeric knowledge system. The architecture is composed of knowledge component, problems processing system, data component and intelligent user interface. This new architecture aims to enhance the capability of integrating hybrid systems, to improve the supporting effectiveness of decision-making and the intelligent level of IDSS, and tries a new way to elevate the system’s ability of handling and learning knowledge.
基金Financial support from the Italian MIUR through the PRIN Project 2015K7FZLH SMARTNESS“Solar driven Chemistry:New materials for photo-and electro-catalysis”
文摘The paper shortly reviews the basic direct approaches applied in searching for viable solutions to solar fuel production. These are generally distinguished in molecular and semiconductor(non-molecular)systems, however, hybrid strategies, proposed recently, have also been included. The most promising efforts are considered, highlighting key aspects and emerging critical issues. Special attention is paid to aspects such as electrode architecture, device design, and main differences in the scientific vision and challenges to directly produce solar fuels. This overview could be useful to orientate the readers in the wide panorama of research activities concerning water splitting, natural and artificial photosynthesis, and solar fuel production through the identification of common aspects, specialties and potentialities of the many initiatives and approaches that are developing worldwide in this field with the final aim to meet world energy demand.
基金the National Natural Science Foundation of China(Nos.52125205,U20A20166,and 52192614)National Key Research and Development Program of China(Nos.2021YFB3200302 and 2021YFB3200304)+2 种基金Natural Science Foundation of Beijing Municipality(No.2222088)Shenzhen Science and Technology Program(No.KQTD20170810105439418)the Fundamental Research Funds for the Central Universities.
文摘Stretchable hybrid systems have been attracting tremendous attention for their essential role in soft robotics,on-skin electronics,and implantable devices.Both rigid and soft functional modules are typically required in those devices.Consequently,ensuring stable electrical contact between rigid and soft modules is a vital part.Here,we propose a simple,universal,and scalable strategy for the stretchable hybrid system through a highly precise printable liquid metal particle-based conductor and adhesive fluorine rubber substrate.The properties of liquid metal particle-based conductors could be easily tuned to realize high-precision patterning,large-scale printing,and the ability to print on various substrates.Additionally,the fluorine rubber substrate could form strong interfacial adhesion with various components and materials through simply pressing and heating,hence enabling stable electrical contact.Furthermore,we prepared a stretchable hybrid light-emitting diode(LED)display system and employed it in on-skin visualization of pressure levels,which perfectly combined rigid and soft modules,thus demonstrating the promising potential applications in complex multifunctional stretchable hybrid systems for emerging technologies.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
文摘The transition of the global economy to a low-carbon development path has led to dramatic changes in the organization and functioning of energy markets around the world,where hybrid energy systems(HESs)are one of the decisive active agents.At the same time,a number of problems facing the modern HESs are primarily due to the stochastic nature of the renewable energy they use,require further profound changes not only in the technologies they use and how they manage them,necessary to meet the needs of end consumers and interact with the unified energy system,but also to preserve the ability of the environment to self-heal.In order to make the process of changes more efficient and eco-deep,the article proposes to use and discusses the approach based on service dominant(SD)logic,which opens up new opportunities for solving the problems of HESs.First of all through:the implementation of closer service interaction with other participants in the energy markets,as well as with the environment;a systemically organized process of transforming the“product”economic activity of HESs into a service-dominant one;developing the generalized and engineering models for solving the problems of optimizing the technical and economic indicators of HESs,operation in steady-state and transient modes.The calculations confirm the effectiveness of the proposed approach and its ability to reduce the average daily costs for the system as a whole by 14.7%compared to the costs with a uniform distribution of power between the modules.
基金supported partly by“973 Program”under Grant No.2014CB340701by the National Natural Science Foundation of China under Grant Nos.61625205,91418204 and 61625206+2 种基金by CDZ Project CAP(GZ 1023)by the CAS/SAFEA International Partnership Program for Creative Research Teamssupported partly by the National Natural Science Foundation of China under Grant Nos.11290141,11271034 and 61532019
文摘Hybrid systems are dynamical systems with interacting discrete computation and continuous physical processes, which have become more common, more indispensable, and more complicated in our modern life. Particularly, many of them are safety-critical, and therefore are required to meet a critical safety standard. Invariant generation plays a central role in the verification and synthesis of hybrid systems. In the previous work, the fourth author and his coauthors gave a necessary and sufficient condition for a semi-algebraic set being an invariant of a polynomial autonomous dynamical system, which gave a confirmative answer to the open problem. In addition, based on which a complete algorithm for generating all semi-algebraic invariants of a given polynomial autonomous hybrid system with the given shape was proposed. This paper considers how to extend their work to non-autonomous dynamical and hybrid systems. Non-autonomous dynamical and hybrid systems are with inputs, which are very common in practice; in contrast, autonomous ones are without inputs. Furthermore, the authors present a sound and complete algorithm to verify semi-algebraic invariants for non-autonomous polynomial hybrid systems. Based on which, the authors propose a sound and complete algorithm to generate all invariants with a pre-defined template.
基金supported by the National Natural Science Foundation of China under Grant Nos.60433010 and 60873018the Specialized Research Foundation for the Doctoral Program of Chinese Higher Education under Grant No.200807010012the Defense Pre-Research Project of China under Grant No.51315050105
文摘This paper investigates symbolic algorithmic analysis of rectangular hybrid systems. To deal with the symbolic reachability problem, a restricted constraint system called hybrid zone is formalized for the representation and manipulation of rectangular automata state-spaces. Hybrid zones are proved to be closed over symbolic teachability operations of rectangular hybrid systems. They are also applied to model-checking procedures for verifying some important classes of timed computation tree logic formulas. To represent hybrid zones, a data structure called difference constraint matrix is defined. These enable us to deal with the symbolic algorithmic analysis of rectangular hybrid systems in an efficient way.
基金Project supported by the National Natural Science Foundation of China(No.61601510)the Young Talent Support Project of China Association for Science and Technology(No.18-JCJQ-QT-008)。
文摘In this study,we extend traditional(single-target)hybrid systems to multi-target hybrid systems with a focus on the multi-maneuvering-target tracking system.This system consists of a continuous state,a discrete and switchable state,and a discrete,time-constant,and unique state.By defining a new generalized labeled multi-Bernoulli density,we prove that it is closed under the Chapman-Kolmogorov prediction and Bayes update for multi-target hybrid systems.In other words,we provide the exact derivation of a solution to this system,i.e.,the multi-model generalized labeled multi-Bemoulli filter,which has been developed without strict proof.
基金supported by the National Natural Science Foundation of China(Grant Nos.61373043&61003079)the Fundamental Research Funds for the Central Universities(Grant No.JB140316)
文摘For symbolic reachability analysis of rectangular hybrid systems, the basic issue is finding a formal structure to represent and manipulate its infinite state spaces. Firstly, this structure must be closed to the reachability operation which means that reachable states from states expressed by this structure can be presented by it too. Secondly, the operation of finding reachable states with this structure should take as less computation as possible. To this end, a constraint system called rectangular zone is formalized, which is a conjunction of fixed amount of inequalities that compare fixed types of linear expressions with two variables to rational numbers. It is proved that the rectangular zone is closed to those reachability operations-intersection, elapsing of time and edge transition. Since the number of inequalities and the linear expression of each inequality is fixed in rectangular zones, so to obtain reachable rectangular zones, it just needs to change the rational numbers to which these linear expressions need to compare. To represent rectangular zones and unions of rectangular zones, a data structure called three dimensional constraint matrix(TDCM) and a BDD-like structure rectangular hybrid diagram(RHD) are introduced.
基金support of the National Science Foundation(Grant No.IIS-1724070,CNS-1830335,IIS-2007949)is gratefully acknowledged.
文摘In safety-critical systems,it is desirable to automatically synthesize controllers for complex tasks with guaranteed safety and correctness.Although much progress has been made through controller synthesis from temporal logic speci-cations,existing approaches generally require conservative assumptions and do not scale well with system dimensionality.We propose a scalable,provably complete algorithm that synthesizes continuous trajectories for hybrid systems to satisfy temporal logic speci-cations.Speci-cally,we harness highly e±cient Boolean satis-ability(SAT)and Linear Programming(LP)solvers to-nd trajectories that satisfy nonconvex Signal Temporal Logic(STL)speci-cations for a class of high dimensional hybrid systems.The proposed design algorithms are proven sound and complete,and are validated in simulation experiments.
文摘Botswana currently depends on electricity generated from coal-based power plant or electricity supplied from the border in South Africa. The country has good reserves of coal and the solar radiation is sufficiently high to make solar thermal attractive for generating electricity. The paper presents two conceptual coal-fired power station designs in which a solar sub-system augments heat to the feed heaters or to the boiler. The thermal and economic analyses showed enhanced system performance which indicates that solar power could be embedded into existing fossil fuel plants or new power stations. Integrating solar energy with existing or new fossil fuel based power plants could reduce the cost of stand-alone solar thermal power stations, reduce CO2 emissions and produce experience necessary to operate a full scale solar thermal electricity generation facility.
基金the Sichuan Science and Technology Program (2019YJ0162)the National Natural Science Foundation of China (21402023, 51773027)the National Key R@D Program of China (2017YFB0702802) for financial support。
文摘Two extended hybrid conjugated systems based on a triphenylamine(TPA) core with two and three peripheral 1,4-dithiafulvenes(DTF) units coded WH-2 and WH-3 as hole-transporting materials(HTMs) applied in perovskite solar cells(PSCs) are synthesized by facile one-step reaction in good yield over 75%. DTF unit as electron donor can enhance the electron donating ability and the fusion of benzenic ring of TPA with DTF unit may lead to reinforced intermolecular interactions in the solid state. In addition,WH-2 and WH-3 exhibit a pyramid shape containing partial planarity and quasi three-dimensionality features, which is also conducive to enhancing the π-π stacking of molecules in the solid state. The above-mentioned structural characteristics make the two HTMs have good hole mobilities. As a result,WH-2 and WH-3 obtained the high intrinsic hole mobilities of 4.69 × 10^(-4)and 2.18 × 10^(-3)cm^(2)V^(-1)s^(-1)respectively. Finally, the power conversion efficiencies(PCEs) of PSCs with WH-2 and WH-3 as cost-effective dopant-free HTMs are 15.39% and 19.22% respectively and the PCE of PSC with WH-3 is on a par with that of PSC with Li-TFSI/t-BP doped Spiro-OMe TAD(19.67%).
基金supported by the National Natural Science Foundation of China (60974139)
文摘Finite time stability and stabilization are studied for hy-brid dynamic systems. By combining multiple Lyapunov function and finite time Lyapunov function, a sufficient condition of finite time stability is given for the system. Compared with the previ-ous works, our results have less conservativeness. Furthermore, based on the state partition of continuous and resetting parts of system, a hybrid feedback controller is constructed, which stabi-lizes the closed-loop systems in finite time. Finally, a numerical example is provided to demonstrate the effectiveness of the pro-posed method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11402199)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2022JM004 and 2018JM1050)the Education Department Foundation of Shaanxi Province,China(Grant No.14JK1676)
文摘Measure synchronization in hybrid quantum-classical systems is investigated in this paper.The dynamics of the classical subsystem is described by the Hamiltonian equations,while the dynamics of the quantum subsystem is governed by the Schr¨odinger equation.By increasing the coupling strength in between the quantum and classical subsystems,we reveal the existence of measure synchronization in coupled quantum-classical dynamics under energy conservation for the hybrid systems.