期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mineral structure and crystal morphologies of high-iron hydrargillite 被引量:1
1
作者 Hui-bin Yang Feng-qin Liu Xiao-lin Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第5期505-514,共10页
Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–d... Various characterization methods, including scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller surface-area measurements, thermogravimetry–differential scanning calorimetry, X-ray diffraction, and infrared spectroscopy, were used to study the mineral structure and surface characteristics of high-iron hydrargillite. Gibbsite, goethite, and hematite were found to be the main mineral components of hydrargillite, whereas the goethite and hematite were closely clad to the surface of the multilayer gibbsite crystals. Compared with the synthetic gibbsite, the hydrargillite contained more structural micropores generated by the mineral evolution during the mineralization process. The gibbsite in hydrargillite contained less crystal water compared with the synthetic gibbsite, and it was a typical polymorphic structure. The isomorphous substitution of Al and Fe was observed in goethite. The dissolution-controlling step of hydrargillite was the ionic diffusion speed because of the goethite and hematite that closely covered and encapsulated the gibbsite crystals. 展开更多
关键词 hydrargillite GOETHITE GIBBSITE MINERAL structure CRYSTAL MORPHOLOGIES
下载PDF
Sorption of Perfluorooctane sulfonate(PFOS) including its isomers on hydrargillite as a function of pH,humic substances and Na2SO4
2
作者 Jean-Noel Uwayezu Leo W.Y.Yeung Mattias Bäckström 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第1期263-272,共10页
Perfluorooctane sulfonate(PFOS)is a persistent organic pollutant(POP)and emergent contaminant that are widespread in the environment.Understanding the mechanisms controlling the distribution of PFOS and its isomers be... Perfluorooctane sulfonate(PFOS)is a persistent organic pollutant(POP)and emergent contaminant that are widespread in the environment.Understanding the mechanisms controlling the distribution of PFOS and its isomers between hydrargillite and the water phase is important in order to study their redistribution and mobility in the environment.This study investigated the effects of pH,humic acid,fulvic acid and Na_(2)SO_(4) on sorption of PFOS isomers to hydrargillite.A mixture of PFOS isomers was spiked into water and hydrargillite was added to the system and shaken for one day;the system was tested with different aqueous composition.Concentrations of PFOS isomers in the aqueous phase were quantified using an ultra-performance liquid chromatograph coupled to a triple quadrupole mass spectrometer.Our results showed that the distribution coefficients of PFOS isomers were found to be 0.76,0.71,0.93 and 0.90 at pH 6.5,for 3-/4-/5-PFOS,6-/2-PFOS,L-PFOS and total PFOS respectively.The distribution coefficients increased at lower pH and decreased at alkaline conditions.The presence of humic substances(HS)increased the sorption slightly at the environmental pH of 6.5,although a competition effect was observed during acidic conditions.A tendency of PFOS distribution to hydrargillite in the presence of Na_(2)SO_(4) was like its behavior in the presence of HS although the mechanisms behind the sorption were interpreted differently.This study revealed that L-PFOS was readily sorbed when no other chemicals were added or in 20 mg/L FA or 100 mg/L Na_(2)SO_(4).We suggest that an increase in PFOS sorption in the presence of HS may be due to hydrophobic mechanisms while Na_(2)SO_(4) contributed to increased sorption through ionic strength effects. 展开更多
关键词 hydrargillite Perfluorooctane sulfonate SORPTION Humic substances Electrostatic Ionic strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部