期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
MgSO_(4)·7H_(2)O for thermochemical energy storage:Hydration/dehydration kinetics and cyclability
1
作者 CHEN Jie MA Hongkun DING Yulong 《储能科学与技术》 CAS 2024年第12期4259-4271,共13页
In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and... In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO_(4)·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics. 展开更多
关键词 thermochemical energy storage thermal analysis thermal cycling MgSO_(4)hydration/dehydration kinetics
下载PDF
The ecological role of dew in assisting seed germination of the annual desert plant species in a desert environment, northwestern China 被引量:3
2
作者 ZHUANG Yanli ZHAO Wenzhi 《Journal of Arid Land》 SCIE CSCD 2016年第2期264-271,共8页
It is important to understand the effects of dew events on non-mucilaginous seed germination of annual desert plant species during dry seasons, which is critical to maintaining long-term soil seed banks in a harsh des... It is important to understand the effects of dew events on non-mucilaginous seed germination of annual desert plant species during dry seasons, which is critical to maintaining long-term soil seed banks in a harsh desert environment. We hypothesize that dew deposition also assists in the non-mucilaginous seed germination of annual desert species. A common field dew treatment experiment was conducted in the Linze Inland River Basin Research Station to investigate the effects of dew deposition on the seed germination of four annual species, including Agriophyllum squarrosum, Corispermum mongoficum, Bassia dasyphylla and Halogeton arachnoideus. The results showed that the presence of dew significantly increased seed germination percentages and decreased the nonviable seed percentages of B. dasyphylla and H. arachnoideus, whereas there was no such trend for the seeds of C. mongolicum and A. squarrosum. The ecological effects of dew on the seed germination and viability of the annual desert plants were species specific. Although dew wetting is insufficient to cause seed germination, it may help in priming the seeds. 展开更多
关键词 dew deposition seeds hydration and dehydration seeds viability
下载PDF
Preparation of New Cementitious System using Fly Ash and Dehydrated Autoclaved Aerated Concrete 被引量:3
3
作者 水中和 LU Jianxin +2 位作者 TIAN Sufang SHEN Peiliang DING Sha 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期726-732,共7页
We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner ... We experimentally studied the interaction between pozzolanic material(fly ash) and dehydrated autoclaved aerated concrete(DAAC). The DAAC powder was obtained by grinding aerated concrete waste to particles fi ner than 75μm and was then heated to temperatures up to 900 ℃. New cementitious material was prepared by proportioning fly ash and DAAC, named as AF. X-ray diffraction(XRD) was employed to identify the crystalline phases of DAAC before and after rehydration. The hydration process of AF was analyzed by the heat of hydration and non-evaporable water content(Wn). The experimental results show that the highest reactivity of DAAC can be obtained by calcining the powder at 700 ℃ and the dehydrated products are mainly β-C2 S and CaO. The cumulative heat of hydration and Wn was found to be strongly dependent on the replacement level of fl y ash, increasing the replacement level of fl y ash lowered them in AF. The strength contribution rates on pozzolanic effect of fl y ash in AF are always negative, showing a contrary tendency of that of cement-fl y ash system. 展开更多
关键词 dehydrated autoclaved aerated concrete pozzolanic reaction heat of hydration nonevaporable water content strength contribution rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部