期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Hydration Kinetics of Phosphorus Slag-cement Paste 被引量:9
1
作者 陈霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第1期142-146,共5页
Hydration characteristics of Portland cement paste with phosphorus slag powder incorporated and hydration kinetics was investigated with SEM, X-ray diffraction, DTA-TG and calorimeter Ⅱ80. Results showed that phospho... Hydration characteristics of Portland cement paste with phosphorus slag powder incorporated and hydration kinetics was investigated with SEM, X-ray diffraction, DTA-TG and calorimeter Ⅱ80. Results showed that phosphorus slag powder could reduce total amount of hydration products yet had little influence on the type of hydration products. The total amount of heat of hydration was decreased by 49.11% and the final setting was postponed by 2.28 h when phosphorus slag powder substituted 35% Portland cement by mass. The accelerating stage of this composite paste was controlled by catalysis, decreasing stage controlled by both catalysis and diffusion while stabilizing stage by diffusion alone. Hydration resistance and activation energy were reduced and hydration speed was accelerated. 展开更多
关键词 phosphorus slag hydration kinetics CEMENT micro structure mechanism.
下载PDF
In-situ Monitoring of Hydration Kinetics of Cement Pastes by Low-field NMR 被引量:2
2
作者 佘安明 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期692-695,共4页
Low field NMR technique was applied to investigate the hydration of cement pastes with different water to cement ratios or addition of superplasticizer. As a nondestructive method, this technique can be used to monito... Low field NMR technique was applied to investigate the hydration of cement pastes with different water to cement ratios or addition of superplasticizer. As a nondestructive method, this technique can be used to monitor the hydration kinetics process by following the changes of longitudinal relaxation time (T1) of water constrained in the pastes. The experimental results indicate that the T1 distributions of water in the fresh paste normally exhibite bimodal distribution, where the large peak is corresponding to the free water while the small one is contributed by the water stored in the flocculations. Time dependence of the weighted average T1 has a good agreement with the hydration process and could be divided into four stages, i e, initial period, dormant period, accelerated period and steady period. The hydration mechanism of each stage was described based on the theory of cement chemistry. In addition, the total signal intensity, which is proportional to the content of the physically bound water in the samples, decrease successively during the hydration reflecting the consumption of physically bound water by hydration reactions. 展开更多
关键词 CEMENT hydration kinetics low field NMR relaxation time
下载PDF
Hydration kinetics of cementitious materials composed of red mud and coal gangue 被引量:7
3
作者 Na Zhang Hong-xu Li Xiao-ming Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1215-1224,共10页
To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue(RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of ... To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue(RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulovi?-Dabi? model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth(NG), interaction at phase boundaries(I), and diffusion(D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC. 展开更多
关键词 red mud coal gangue cementitious materials hydration kinetics
下载PDF
Influence of colloidal nanosilica on hydration kinetics and properties of CaO/CaSO_(4)-activated slag binder
4
作者 Qing Liu Qingming He +4 位作者 Ruoyun Li Yanfei Feng Xianjun Lyu Junxiang Wang Lin Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1407-1418,共12页
To solve the energy consumption and CO_(2) emission during cement production,the new binders must be developed as an alternative to cement.CaO/CaSO_(4)-activated slag binder is an eco-friendly and safe cementitious ma... To solve the energy consumption and CO_(2) emission during cement production,the new binders must be developed as an alternative to cement.CaO/CaSO_(4)-activated slag binder is an eco-friendly and safe cementitious material;however,its low strength during initial stages limits its applications.In this study,colloidal nanosilica(CNS)was employed as an additive to improve the strength of CaO/CaSO_(4)-activated slag binder,and the effects of CNS on the workability,hydration kinetics,hydration products(type,quantity,and polymerization degree),and binder microstructure were thoroughly investigated.A moderate CNS content,through its nucleation effect,significantly increased the hydration rate of the nucleation and crystal growth(NG),phase boundary interaction(I)and diffusion(D)processes,which generated large quantities of calcium aluminosilicate hydrate(C-A-S-H)gel in the initial hydration stage.Meanwhile,the addition of CNS improved the polymerization degree of C-A-S-H gel.This amorphous reactant well-filled the pore space between slag particles and yielded a compact microstructure,consequently enhancing the binder strength.Considering the reduction in fluidity and the increase in production cost,the CNS mass fraction was controlled as3%,and the binder reached the satisfactory strengths of 3.87,24.47,31.43,and 41.78 MPa at 1,3,7,and 28 d,respectively. 展开更多
关键词 Alkali-activated slag Colloidal nanosilica Strength hydration kinetics C-A-S-H gel
下载PDF
A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water
5
作者 WANG Xuerui SUN Baojiang +5 位作者 LIU Shujie LI Zhong LIU Zhengli WANG Zhiyuan LI Hao GAO Yonghai 《Petroleum Exploration and Development》 2020年第4期867-876,共10页
Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was estab... Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was established.The differential method was used to do the coupled numerical calculation,and the calculation results were compared with experimental and field data to verify the accuracy of the model.When the interactions between temperature,pressure and hydration reaction are considered,the calculation accuracy of the model proposed is within 5.6%,which can meet the engineering requirements.A series of numerical simulation was conducted to find out the variation pattern of temperature,pressure and hydration degree during the cement curing.The research results show that cement temperature increases dramatically as a result of the heat of cement hydration.With the development of cement gel strength,the pore pressure of cement slurry decreases gradually to even lower than the formation pressure,causing gas channeling;the transient temperature and pressure have an impact on the rate of cement hydration reaction,so cement slurry in the deeper part of wellbore has a higher rate of hydration rate as a result of the high temperature and pressure.For well cementing in deep water regions,the low temperature around seabed would slow the rate of cement hydration and thus prolong the cementing cycle. 展开更多
关键词 deep-water drilling well cementing hydration reaction kinetics temperature field pressure field coupled prediction model
下载PDF
MgSO_(4)·7H_(2)O for thermochemical energy storage:Hydration/dehydration kinetics and cyclability
6
作者 CHEN Jie MA Hongkun DING Yulong 《储能科学与技术》 CAS 2024年第12期4259-4271,共13页
In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and... In recent decades,MgSO_(4)·7H_(2)O(epsomite)has attracted significant attention as a promising thermochemical-based thermal energy storage material due to its high theoretical energy density,wide availability,and affordability.Despite extensive research efforts,progress in achieving high-energy density has been limited,primarily due to inadequate understanding of its reaction mechanisms and unfavorable dehydration/hydration kinetics.This study systematically investigated the hydration/dehydration kinetics and cyclability of MgSO_(4)·7H_(2)O.The results reveal that the dehydration process is influenced by the heating rate,with an optimal rate of 5℃/min,resulting in a seven-step MgSO_(4)·7H_(2)O dehydration process with a dehydration heat close to the theoretical value.The reaction kinetic analysis indicated that the rate of hydration was approximately 50%lower than that of dehydration.In addition,thermal cycling tests of MgSO4·7H_(2)O under the conditions of this study(small sample size)indicated good cyclability,with hydration rates increasing with increasing cycling numbers up to approximately 10 cycles where level-off occurs.These results are consistent with scanning electron microscopy analyses,which revealed the formation of cracks and channels in the salt hydrate particles,facilitating mass transfer and improved kinetics. 展开更多
关键词 thermochemical energy storage thermal analysis thermal cycling MgSO_(4)hydration/dehydration kinetics
下载PDF
Resource utilization of drinking water treatment aluminum sludge in green cementing materials: Hydration characteristics and hydration kinetics
7
作者 Jing Yang Cheng Chen +2 位作者 Shuoyu Chen Yujie Ren Jinsuo Lu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第10期236-248,共13页
As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this p... As a byproduct of water treatment,drinking water treatment aluminum sludge(DWTAS)has challenges related to imperfect treatment and disposal,which has caused potential harm to human health and the environment.In this paper,heat treatment DWTAS as a supplement cementitious material was used to prepare a green cementing material.The results show that the 800℃ is considered as the optimum heat treatment temperature for DWTAS.DWTAS-800℃ is fully activated after thermal decomposition to form incompletely crystallized highly activeγ-Al_(2)O_(3) and active SiO_(2).The addition of DWTAS promoted the formation of ettringite and C-(A)-S-H gel,which could make up for the low early compressive strength of cementing materials to a certain extent.When cured for 90 days,the compressive strength of the mortar with 30% DWTAS-800℃ reached 44.86 MPa.The dynamic process was well simulated by Krstulovi′c-Dabi′c hydration kinetics model.This study provided a methodology for the fabrication of environmentally friendly and cost-effective compound cementitiousmaterials and proposed a“waste-to-resource”strategy for the sustainable management of typical solid wastes. 展开更多
关键词 Drinking water treatment aluminum sludge Green cementing material hydration characteristics hydration kinetics
原文传递
Hydration Mechanism of Sulphoaluminate Cement 被引量:15
8
作者 何真 YANG Huamei LIU Meiyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期70-74,共5页
The feasibility of sulphoaluminate cement (SAC) utilization in support mortar was studied. Setting time and strength of as-received sulphoaluminate cement (SAC) paste were examined, hydration kinetics behavior was... The feasibility of sulphoaluminate cement (SAC) utilization in support mortar was studied. Setting time and strength of as-received sulphoaluminate cement (SAC) paste were examined, hydration kinetics behavior was determined through Isothermal Calorimeter, and hydration mechanism was investigated by X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM). Results showed that as-received SAC contained 61% of anhydrous calcium sulfate (3CA'CaSO4) and dicalcium silicate (C2S). The strength after 1 day or 3 days grew to 68.6% or 85.7% of that after 28 days respectively, while most of hydration heat was released within 1 day. The emergency of three exothermic peaks at acceleration stage was found and hydration kinetics model was established choosing the terminal time of the first exothermic peak at accelerating stage as the beginning of accelerating stage. XRD analysis suggested that large amount of ettringite (AFt) was produced at early age and FSEM observation revealed that ettringite (AFt) formed in sulphoaluminate cement (SAC) paste was characterized of different morphology which was proved to be caused by different ion concentrations. 展开更多
关键词 sulphoaliminate cement ETTRINGITE hydration kinetics hydration mechanism
下载PDF
Hydration Mechanism of Cement-based Materials with Different Si-rich Mineral Admixtures 被引量:3
9
作者 何真 胡玲玲 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期654-660,共7页
Early hydration mechanism of cement-based materials with silica fume, nano-SiO2 and silica sol of different contents was investigated, and the detailed effect of these Si-rich mineral admixtures in three stages of ear... Early hydration mechanism of cement-based materials with silica fume, nano-SiO2 and silica sol of different contents was investigated, and the detailed effect of these Si-rich mineral admixtures in three stages of early hydration(NG, I, D) using kinetics model was focused. The results showed that silica fume, nano-SiO2, and silica sol have significant effect on kinetic parameters n, k1, k2 and k3, the fineness and existing form of SiO2 particles in these Si-rich mineral admixtures are two important factors to affect the hydration process and on the parameters. Through integrated use of methods of hydration heat-Krstulovic-Dabic Modelsynthetical thermal analysis, data of hydration heat were collected, hydration degree was characterized, as well as the resulting crystallization behavior of early hydration, to build a numerical relationship between parameter n and CH contents that n decreases with increasing CH, and thus, a direct connection between hydration heat release behavior and crystallization behavior has been established. 展开更多
关键词 silica fume nano-SiO2 silica sol hydration kinetics model early hydration CH content
下载PDF
Hydration Mechanism of Silica Fume- sulphoaluminate Cement 被引量:1
10
作者 HE Zhen YANG Huamei +1 位作者 HU Shuguang LIU Meiyan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1128-1133,共6页
Setting time and strength of sulphoaluminate rapid hardening cement (SAC) incorporated in the presence and absence of silica fume (SF) were determined. Combined with the techniques of" isothermal calorimeter, XRD... Setting time and strength of sulphoaluminate rapid hardening cement (SAC) incorporated in the presence and absence of silica fume (SF) were determined. Combined with the techniques of" isothermal calorimeter, XRD and FSEM, the hydration kinetics of the two systems and the effect mechanism of SF on SAC were investigated. The experimental results showed that SF was proved to be beneficial for SAC system, in terms of setting time and late strength gain. Evidence of accelerator effect of silica fume was found during the first 8 hours of hydration. The formation of AFt was accelerated and the microstructure of the hydration products grew denser with incorporation of SF. SF was proved to play the role of dispersion and setting control at early age and had a greater contribution to later strength due to the increment of crystal nucleation point and the pozzolanic activity. Therefore, SF can be used to not only control the hydration kinetics of SAC, but also develop the late strength and improve the microstructure. 展开更多
关键词 sulphoaluminate rapid hardening cement silica fume hydration kinetics hydrationmechanism
下载PDF
Particle Size Optimization of Thermochemical Salt Hydrates for High Energy Density Thermal Storage
11
作者 Andrew Martin Drew Lilley +1 位作者 Raνi Prasher Sumanjeet Kaur 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期326-333,共8页
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy... Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated. 展开更多
关键词 high energy density hydration kinetics long-term cycling thermal energy storage thermochemical materials
下载PDF
Experimental study of hydrogen sulfide hydrate formation: Induction time in the presence and absence of kinetic inhibitor 被引量:5
12
作者 Yousef Salamat Abdolreza Moghadassi +2 位作者 Mohammad Illbeigi Ali Eslamimanesh Amir H. Mohammadi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期114-118,共5页
In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is ... In this paper, the effect of adding different concentrations of kinetic inhibitors on the induction time of hydrogen sulfide hydrate formation in a reactor equipped with automatic adjustable temperature controller is studied. A novel method namely "sudden cooling" is used for performing the relevant measurements, in which the induction time of H2S hydrate in the presence/absence of PVP and L-tyrosine with different concentrations (100, 500, and 1000 ppm) is determined. As a result, PVP with the concentration of 1000 ppm in aqueous solution is detected as a more suitable material for increasing the induction time of H2S hydrate formation among the investigated kinetic hydrate inhibitors. 展开更多
关键词 hy^ogen sulfide gas hydrates clathrate hydrates kinetic inhibitor induction time sudden cooling
下载PDF
Insights into kinetic inhibition effects of MEG,PVP,and L-tyrosine aqueous solutions on natural gas hydrate formation 被引量:5
13
作者 Amir Saberi Abdolmohammad Alamdari +1 位作者 Ali Rasoolzadeh Amir H.Mohammadi 《Petroleum Science》 SCIE CAS CSCD 2021年第2期495-508,共14页
It is necessary to understand all the prerequisites, which result in gas hydrate formation for safe design and control of a variety of processes in petroleum industry. Thermodynamic hydrate inhibitors (THIs) are norma... It is necessary to understand all the prerequisites, which result in gas hydrate formation for safe design and control of a variety of processes in petroleum industry. Thermodynamic hydrate inhibitors (THIs) are normally used to preclude gas hydrate formation by shifting hydrate stability region to lower temperatures and higher pressures. Sometimes, it is difficult to avoid hydrate formation and hydrates will form anyway. In this situation, kinetic hydrate inhibitors (KHIs) can be used to postpone formation of gas hydrates by retarding hydrate nucleation and growth rate. In this study, two kinetic parameters including natural gas hydrate formation induction time and the rate of gas consumption were experimentally investigated in the presence of monoethylene glycol (MEG), L-tyrosine, and polyvinylpyrrolidone (PVP) at various concentrations in aqueous solutions. Since hydrate formation is a stochastic phenomenon, the repeatability of each kinetic parameter was evaluated several times and the average values for the hydrate formation induction times and the rates of gas consumption are reported. The results indicate that from the view point of hydrate formation induction time, 2 wt% PVP and 20 wt% MEG aqueous solutions have the highest values and are the best choices. It is also interpreted from the results that from the view point of the rate of gas consumption, 20 wt% MEG aqueous solution yields the lowest value and is the best choice. Finally, it is concluded that the combination of PVP and MEG in an aqueous solution has a simultaneous synergistic impact on natural gas hydrate formation induction time and the rate of gas consumption. Furthermore, a semi-empirical model based on chemical kinetic theory is applied to evaluate the hydrate formation induction time data. A good agreement between the experimental and calculated hydrate formation induction time data is observed. 展开更多
关键词 Gas hydrate Clathrate hydrate Natural gas Kinetic hydrate inhibitor(KHI) Induction time kinetics
下载PDF
Kinetic hydrate inhibitor performance of new copolymer poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s with TBAB 被引量:8
14
作者 Jun Hu Sijia Li +3 位作者 Yanhong Wang Xuemei Lang Qingping Li Shuanshi Fan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期126-131,共6页
In oil and gas field, the application of kinetic hydrate inhibitors (KHIs) independently has remained problematic in high subcooling and high water-cut situation. One feasible method to resolve this problem is the c... In oil and gas field, the application of kinetic hydrate inhibitors (KHIs) independently has remained problematic in high subcooling and high water-cut situation. One feasible method to resolve this problem is the combined use of KHIs and some synergists, which would enhance KHIs’ inhibitory effect on both hydrate nucleation and hydrate crystal growth. In this study, a novel kind of KHI copolymer poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)s (HGs) is used in conjunction with TBAB to show its high performance on hydrate inhibition. The performance of HGs with different monomer ratios in structure II tetrahydrofuran (THF) hydrate is investigated using kinetic hydrate inhibitor evaluation apparatus by step-cooling method and isothermal cooling method. With the combined gas hydrate inhibitor at the concentration of 1.0 wt%, the induction time of 19 wt% THF solution could be prolonged to 8.5 h at a high subcooling of 6℃. Finally, the mechanism of HGs inhibiting the formation of gas hydrate is proposed. 展开更多
关键词 clathrate hydrate kinetic hydrate inhibitors combined hydrate inhibitors poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine)
下载PDF
Experimental and density functional theory computational evaluation of poly(N-vinyl caprolactam-co-butyl methacrylate) kinetic hydrate inhibitors 被引量:2
15
作者 Yanping Duan Pengfei Wang +4 位作者 Wenge Yang Xia Zhao Hong Hao Ruijie Wu Jie Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期237-244,共8页
Natural gas hydrate inhibitor has been serving the oil and gas industry for many years. The development and search for new inhibitors remain the focus of research. In this study, the solution polymerization method was... Natural gas hydrate inhibitor has been serving the oil and gas industry for many years. The development and search for new inhibitors remain the focus of research. In this study, the solution polymerization method was employed to prepare poly(N-vinyl caprolactam-co-butyl methacrylate)(P(VCap-BMA)), as a new kinetic hydrate inhibitor(KHI). The inhibition properties of P(VCap-BMA) were investigated by tetrahydrofuran(THF) hydrate testing and natural gas hydrate forming and compared with the commercial KHIs. The experiment showed that PVCap performed better than copolymer P(VCap-BMA). However,low doses of methanol or ethylene glycol are compounded with KHIs. The compounding inhibitors show a synergistic inhibitory effect. More interesting is the P(VCap-BMA)-methanol system has a better inhibitory effect than the PVCap-methanol system. 1% P(VCap-BMA) + 5% methanol presented the best inhibiting performance at subcooling 10.3 °C, the induction time of natural gas hydrate was 445 min.Finally, the interaction between water and several dimeric inhibitors compared by natural bond orbital(NBO) analyses and density functional theory(DFT) indicated that inhibitor molecules were able to form the hydrogen bond with the water molecules, which result in gas hydrate inhibition. These exciting properties make the P(VCap-BMA) compound hydrate inhibitor promising candidates for numerous applications in the petrochemical industry. 展开更多
关键词 Kinetic hydrate inhibitors Synthesis Poly(N-vinylcaprolactam-co-butyl methacrylate) Natural gas HYDRATE Computer simulation
下载PDF
Thermal Analysis of Composite Cements
16
作者 Bentaieb Noureddine Touil Djamel +3 位作者 Lachemet Aziz Zirour Fatiha Ralida Belaadi Salah Frances Christine 《Journal of Chemistry and Chemical Engineering》 2011年第11期1002-1005,共4页
The hydration of cement compounds gives hydrated compounds, which allow linking together, the different particles and aggregate of cement, and gives the concrete the required qualities. The dynamics of hydration react... The hydration of cement compounds gives hydrated compounds, which allow linking together, the different particles and aggregate of cement, and gives the concrete the required qualities. The dynamics of hydration reactions will depend on many factors, such as the fineness of cement, the ratio w/c during hydration, temperature, mixing technique, and the presence of additives in blended cement, as pozzolan, tuff and slag from blast furnaces. We studied the thermal and kinetic reactions of Portland cement hydration, and its variants with different additions using a differential scanning calorimetric analysis. The parameters from these models of curves allow us to evaluate the enthalpies, and the degree of progression of this blended cement, and finally determine their activation energies. We can say that the hydration of Portland cement is due to a series of reactions as ( C3S,C2S,C3A and C4AF reactions with water) and each of them, has its own kinetic, the experimental measurement of the heat of hydration, allows us to represent the overall kinetics of these reactions values of activation energy, they are therefore apparent and global energy. In our experiments, significant differences in these physicochemical parameters were observed, depending on the additive used. 展开更多
关键词 hydration of Portland cement kinetics of hydration cement thermal analysis.
下载PDF
Synthesis and application of a novel combined kinetic hydrate inhibitor 被引量:6
17
作者 HU Jun WANG YanHong +3 位作者 LANG XueMei DU Juan LI QingPing FAN ShuanShi 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3289-3295,共7页
In oil and gas exploration and transportation, low dosage hydrate inhibitors (LDHIs) are more favorably utilized to inhibit the formation of hydrates than thermodynamic inhibitors (THs) as a trend. However, there ... In oil and gas exploration and transportation, low dosage hydrate inhibitors (LDHIs) are more favorably utilized to inhibit the formation of hydrates than thermodynamic inhibitors (THs) as a trend. However, there are no industrial products of LDHIs available domestically, and the corresponding application experience is in urgent need. In this paper, a combined hydrate inhibitor (HY-1) was synthesized after a series of reaction condition optimization, and its performance on THF hydrate inhibition was investigated using kinetic hydrate inhibitor evaluation apparatus with 6 cells bathing in air. The results show that when the reaction temperature is 60℃, the reaction time is 6 h, and the monomer: solvent ratio is 1:2, the product has the best kinetic hydrate inhibitor performance on THF hydrate. On these bases, the scale-up production of this combined hydrate inhibitor was carried out. Although the scale-up product (HY-10) performs less effectively on the THF hydrate inhibition than HY-1, it functions better than a commercial product (Inhibex501) during in-house tests. HY-10 was successfully applied to the gas production process. Field trials in northem Shaanxi PetroChina Changqing Oilfield Company (PCOC) show that 2 wt% of HY-10 is effective on natural gas hydrate inhibition. It is found through economic analysis that the use of HY-10 has obvious economi- cal advantage over methanol and Inhibex501. 展开更多
关键词 natural gas hydrate combined hydrate inhibitor kinetic hydrate inhibitors natural gas production
原文传递
Progress in use of surfactant in nearly static conditions in natural gas hydrate formation 被引量:2
18
作者 Zhen PAN Yi WU +2 位作者 Liyan SHANG Li ZHOU Zhien ZHANG 《Frontiers in Energy》 SCIE CSCD 2020年第3期463-481,共19页
Natural gas hydrate is an alternative energy source with a great potential for development.The addition of surfactants has been found to have practical implications on the acceleration of hydrate formation in the indu... Natural gas hydrate is an alternative energy source with a great potential for development.The addition of surfactants has been found to have practical implications on the acceleration of hydrate formation in the industrial sector.In this paper,the mechanisms of different surfactants that have been reported to promote hydrate formation are summarized.Besides,the factors influencing surfactant-promoted hydrate formation,including the type,concentration,and structure of the surfactant,are also described.Moreover,the effects of surfactants on the formation of hydrate in pure water,brine,porous media,and systems containing multiple surfactants are discussed.The synergistic or inhibitory effects of the combinations of these additives are also analyzed.Furthermore,the process of establishing kinetic and thermodynamic models to simulate the factors affecting the formation of hydrate in surfactant-containing solutions is illustrated and summarized. 展开更多
关键词 gas hydrate kinetic hydrate promoter COMPOUNDING model SURFACTANT mechanism
原文传递
High efficient development of green kinetic hydrate inhibitors via combined molecular dynamic simulation and experimental test approach 被引量:3
19
作者 Liwei Cheng Jinlong Cui +4 位作者 Jia Li Ran Zhu Bei Liu Shuai Ban Guangjin Chen 《Green Chemical Engineering》 2022年第1期34-43,共10页
The development of environmental friendly low dose hydrate inhibitors like kinetic hydrate inhibitors(KHIs)is of great significance for the flow assurance in oil&gas production and transportation.In this work,a co... The development of environmental friendly low dose hydrate inhibitors like kinetic hydrate inhibitors(KHIs)is of great significance for the flow assurance in oil&gas production and transportation.In this work,a combined molecular dynamic simulation and experimental verification approach was adopted to increase the efficiency of KHIs development.The inhibition effect of a series of copolymers(N-vinylpyrrolidone and N-acrylate)on hydrate growth was studied by using both molecular dynamics simulation and experimental approaches.The simulation results demonstrated that introduction of hydrophobic ester and butyl group in PVP is beneficial for the inhibition.The length of the alkyl chain of ester group played an important role in improving inhibition performance.PVP-A,the one being introduced butyl ester group into PVP gets the best inhibition effect.In addition,inhibitors can restrict methane bubbles to re-dissolve into the liquid phase,thereby inhibiting the growth of methane hydrate.Increasing the interaction between KHIs and methane can also improve the inhibitory effect of KHIs.The experimental results confirm the reliability of the molecular dynamics simulation. 展开更多
关键词 HYDRATE Molecular dynamics Hydrate inhibition Kinetic hydrate inhibitors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部