期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS 被引量:6
1
作者 Xu Bing Ma Jien Lin Jianjie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期490-493,共4页
The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor rece... The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments arc carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out. 展开更多
关键词 hydraulic elevator Computational flow rate Proportional valve
下载PDF
A Short Review on Computational Hydraulics in the Context of Water Resources Engineering 被引量:1
2
作者 Shiblu Sarker 《Open Journal of Modelling and Simulation》 2022年第1期1-31,共31页
<span style="font-family:Verdana;">The term</span> <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;&... <span style="font-family:Verdana;">The term</span> <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">“</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">hydraulics</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">”</span></span></span></span><span><span><span><span style="font-family:;" "=""> </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is </span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">concerned with the conveyance of water that can consist of very simple processes to complex physical processes, such as flow </span><span style="font-family:Verdana;">in open rivers, flow in pipes, </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">flow of nutrients/sediments, </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">flow of</span></span></span></span><span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> groundwater to sea waves. The study of hydraulics is primarily a mixture of theory </span><span style="font-family:Verdana;">and experiments. Computational hydraulics is very helpful to quantify and </span><span style="font-family:Verdana;">predict flow nature and behavior. </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">mathematical model is </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">backbone of the computational hydraulics that consist</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span><span><span><span style="font-family:;" "=""> </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">simple to complex mathematical equations with linear and/or non-linear terms and ordinary or partial differential equations. Analytical solution </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> th</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ese</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> mathematical equations is not feasible in the majority of cases. In these consequences, mathematical models are solved using different numerical techniques and associated schemes. In this manuscript</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we aim to review hydraulic principles along with their mathematical equations. Then we aim to learn some commonly used numerical technique</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to solve different types of differential equations related to hydraulics. Among them</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the Finite Difference Method (FDM), Finite Element Method (FEM) and Finite Volume Method (FVM) have been discussed along with their use in real-life applications in the context of water resources engineering.</span></span></span></span> 展开更多
关键词 Computational hydraulics Finite Difference Method Finite Element Method Finite Volume Method
下载PDF
New prospects for computational hydraulics by leveraging high-performance heterogeneous computing techniques 被引量:3
3
作者 Qiuhua LIANG Luke SMITH Xilin XIA 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第6期977-985,共9页
In the last two decades, computational hydraulics has undergone a rapid development following the advancement of data acquisition and computing technologies. Using a finite-volume Godunov-type hydrodynamic model, this... In the last two decades, computational hydraulics has undergone a rapid development following the advancement of data acquisition and computing technologies. Using a finite-volume Godunov-type hydrodynamic model, this work demonstrates the promise of modern high-performance computing technology to achieve real-time flood modeling at a regional scale. The software is implemented for high-performance heterogeneous computing using the OpenCL programming framework, and developed to support simulations across multiple GPUs using a domain decomposition technique and across multiple systems through an efficient implementation of the Message Passing Interface (MPI) standard. The software is applied for a convective storm induced flood event in Newcastle upon Tyne, demonstrating high computational performance across a GPU cluster, and good agreement against crowd- sourced observations. Issues relating to data availability, complex urban topography and differences in drainage capacity affect results for a small number of areas. 展开更多
关键词 computational hydraulics high-performance computing flood modeling shallow water equations shock-capttLring hydrodynamic model
原文传递
Modeling the effects of mechanical parameters on the hydrodynamic behavior of vertical current classifiers 被引量:3
4
作者 Arabzadeh Jarkani Soroush Khoshdast Hamid +1 位作者 Shariat Elaheh Sam Abbas 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期123-127,共5页
This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, an... This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, and turbulent intensity and fluid velocity were applied as system responses to predict the over- flow cut size variations. These investigations showed that cut size would decrease by increasing diameter and height of the separation column and cone section depth, due to the decrease of turbulent intensity and fluid velocity. As the size of discharge gate increases, the overflow cut-size would decrease due to freely fluid stream out of the column. The overflow cut-size was significantly increased in downward fed classifier compared to that fed by upward fluid stream. In addition, reforming the shape of angular overflow outlet's weir into the curved form prevented stream inside returning and consequently unselec- tire cut-size decreasing. 展开更多
关键词 hydraulic classifier Modeling Computational fluid dynamic Cut size
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部