As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed...As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.展开更多
When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful ...When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful resonance in the working conditions.Therefore,the optimal layout of support is an effective method to reduce the vibration response of hydraulic pipeline system.In this paper,a developed dynamic optimization method for the complex pipeline is proposed to investigate the vibration characteristics of complex pipeline with multi-elastic supports.In this method,the Kriging response surface model between the support position and pipeline is established.The position of the clamp in the model is parameterized and the optimal solution of performance index is obtained by genetic algorithm.The number of clamps and the interval between clamps are considered as the constraints of layout optimization,and the optimization objective is the natural frequencies of pipeline.Taking a typical offshore pipeline as example to demonstrate the effectiveness of the proposed method,the results show that the vibration performance of the hydraulic pipeline system is distinctly improved by the optimization procedure,which can provide reasonable guidance for the design of complex hydraulic pipeline system.展开更多
The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved...The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.展开更多
Vibrations in aircraft hydraulic pipeline system,due to multi-source excitation of high fluid pressure fluctuation and serious vibration environment of airframe,can cause the pipeline system vibration failures through...Vibrations in aircraft hydraulic pipeline system,due to multi-source excitation of high fluid pressure fluctuation and serious vibration environment of airframe,can cause the pipeline system vibration failures through overload in engineering field.Controlling the vibrations in hydraulic pipeline is a challenging work to ensure the flight safety of aircraft.The common vibration control technologies have been demonstrated to be effective in typical structures such as aerospace structures,shipbuilding structures,marine offshore structures,motor structures,etc.However,there are few research literatures on vibration control strategies of aircraft hydraulic pipeline.Combining with the development trend of aircraft hydraulic pipeline system and the requirement of vibration control technologies,this paper provides a detailed review on the current vibration control technologies in hydraulic pipeline system.A review of the general approaches following the passive and active control technologies are presented,which are including optimal layout technique of pipeline and clamps,constrained layer damping technique,vibration absorber technique,hydraulic hose technique,optimal pump structure technique,and active vibration control technique of pipeline system.Finally,some suggestions for the application of vibration control technologies in engineering field are given.展开更多
The siphon-shaped overflow tower is a new type of pressure-suppressing structure used in long water conveyance systems,and it plays a crucial role in guaranteeing the system's stability and safety during hydraulic tr...The siphon-shaped overflow tower is a new type of pressure-suppressing structure used in long water conveyance systems,and it plays a crucial role in guaranteeing the system's stability and safety during hydraulic transient processes.The flow in the tower is characteristic of weir flow in a closed duct,and is thus a complex air-water two-phase flow.Intensive studies of the flow patterns,the pressure pulsations,and the discharge capacity are necessary for better understanding of the flow processes and for the purpose of design.In this paper,we simulate the flow in a siphon-shaped overflow tower under both steady and unsteady flow conditions.Through a steady-flow field simulation,the relationship between the overflow discharge and the pressure in the connected pipeline is analyzed and an empirical formula for evaluating the discharge capacity is provided.Through a transient-flow field simulation,the negative-pressure distributions on the weir crest,the pressure pulsations on the crest and in the falling pond,and the transformation of the air-water two-phase flow in the downstream outlet pipe are analyzed.Moreover,the major influencing factors of the flow patterns,especially,the sectional area of the air vents,are clarified.It is indicated that the siphon-shaped overflow tower can regulate the pressure surge during hydraulic transients and guarantee the safety and stability of the pipeline system,if the shape and the vents are properly designed.展开更多
基金Supported by the National Key Basic Research Program of China(No.2014CB046405)
文摘As the power transmission system of an aircraft,a hydraulic pipeline system is equivalent to the " blood vessel" of the aircraft. With the development of aircraft hydraulic system to high pressure,high speed and high power ratio,the fluid-structure interaction vibration mechanism of hydraulic pipeline is more complex and the influence of friction coupling on vibration cannot be ignored. The fluid-structure interaction of hydraulic pipeline will lead to system vibration,lower reliability of system operation and even pipeline rupture. Taking a hydraulic pipeline of C919 aircraft wingtip as the research object,a 14-equation model of fluid-structure interaction vibration considering friction coupling effect is established in this paper. The effects of friction and fluid parameters on the pipeline fluid-structure interaction vibration characteristics are studied and verified by experiments. The research results will provide theoretical guidance for the analysis of the pipeline fluid-structure interaction vibration and have important theoretical significance and great engineering value for promoting the localization process of large aircraft.
基金This work is supported by Natural Science Foundation of Shandong Province(Grant no.ZR2018MEE021)Equipment Pre Research Fund Project(Grant no.61402100501).
文摘When designing a complex pipeline with long distance and multi-supports for offshore platform,it is necessary to analyze the vibration characteristics of the complex pipeline system to ensure that there is no harmful resonance in the working conditions.Therefore,the optimal layout of support is an effective method to reduce the vibration response of hydraulic pipeline system.In this paper,a developed dynamic optimization method for the complex pipeline is proposed to investigate the vibration characteristics of complex pipeline with multi-elastic supports.In this method,the Kriging response surface model between the support position and pipeline is established.The position of the clamp in the model is parameterized and the optimal solution of performance index is obtained by genetic algorithm.The number of clamps and the interval between clamps are considered as the constraints of layout optimization,and the optimization objective is the natural frequencies of pipeline.Taking a typical offshore pipeline as example to demonstrate the effectiveness of the proposed method,the results show that the vibration performance of the hydraulic pipeline system is distinctly improved by the optimization procedure,which can provide reasonable guidance for the design of complex hydraulic pipeline system.
基金supported by the National Natural Science Foundation of China(Nos.51975025 and 51890822)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2016QNRC001)the National Key Research and Development Program of China(No.2019YFB2004500)。
文摘The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.
基金the National Natural Science Foundation of China(No.51805462)。
文摘Vibrations in aircraft hydraulic pipeline system,due to multi-source excitation of high fluid pressure fluctuation and serious vibration environment of airframe,can cause the pipeline system vibration failures through overload in engineering field.Controlling the vibrations in hydraulic pipeline is a challenging work to ensure the flight safety of aircraft.The common vibration control technologies have been demonstrated to be effective in typical structures such as aerospace structures,shipbuilding structures,marine offshore structures,motor structures,etc.However,there are few research literatures on vibration control strategies of aircraft hydraulic pipeline.Combining with the development trend of aircraft hydraulic pipeline system and the requirement of vibration control technologies,this paper provides a detailed review on the current vibration control technologies in hydraulic pipeline system.A review of the general approaches following the passive and active control technologies are presented,which are including optimal layout technique of pipeline and clamps,constrained layer damping technique,vibration absorber technique,hydraulic hose technique,optimal pump structure technique,and active vibration control technique of pipeline system.Finally,some suggestions for the application of vibration control technologies in engineering field are given.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51039005,50909076 and 51579187)
文摘The siphon-shaped overflow tower is a new type of pressure-suppressing structure used in long water conveyance systems,and it plays a crucial role in guaranteeing the system's stability and safety during hydraulic transient processes.The flow in the tower is characteristic of weir flow in a closed duct,and is thus a complex air-water two-phase flow.Intensive studies of the flow patterns,the pressure pulsations,and the discharge capacity are necessary for better understanding of the flow processes and for the purpose of design.In this paper,we simulate the flow in a siphon-shaped overflow tower under both steady and unsteady flow conditions.Through a steady-flow field simulation,the relationship between the overflow discharge and the pressure in the connected pipeline is analyzed and an empirical formula for evaluating the discharge capacity is provided.Through a transient-flow field simulation,the negative-pressure distributions on the weir crest,the pressure pulsations on the crest and in the falling pond,and the transformation of the air-water two-phase flow in the downstream outlet pipe are analyzed.Moreover,the major influencing factors of the flow patterns,especially,the sectional area of the air vents,are clarified.It is indicated that the siphon-shaped overflow tower can regulate the pressure surge during hydraulic transients and guarantee the safety and stability of the pipeline system,if the shape and the vents are properly designed.