期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Observer-based motion axis control for hydraulic actuation systems 被引量:2
1
作者 Xiaowei YANG Yaowen GE +1 位作者 Wenxiang DENG Jianyong YAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期408-415,共8页
Unknown dynamics including mismatched mechanical dynamics(i.e.,parametric uncertainties,unmodeled friction and external disturbances)and matched actuator dynamics(i.e.,pressure and flow characteristic uncertainties)br... Unknown dynamics including mismatched mechanical dynamics(i.e.,parametric uncertainties,unmodeled friction and external disturbances)and matched actuator dynamics(i.e.,pressure and flow characteristic uncertainties)broadly exist in hydraulic actuation systems(HASs),which can hinder the achievement of high-precision motion axis control.To surmount the practical issue,an observer-based control framework with a simple structure and low computation is developed for HASs.First,a simple observer is utilized to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and adaptive control,an appropriate observer-based composite controller is provided,in which nonlinear feedback terms with updated gains are adopted to further improve the tracking accuracy.Moreover,a smooth nonlinear filter is introduced to shun the“explosion of complexity”and attenuate the impact of sensor noise on control performance.As a result,this synthesized controller is more suitable for practical use.Stability analysis uncovers that the developed controller assures the asymptotic convergence of the tracking error.The merits of the proposed approach are validated via comparative experiment results applied in an HAS with an inertial load as well. 展开更多
关键词 Adaptive control Asymptotic convergence hydraulic actuation system Sensor noise Unknown dynamics compensation
原文传递
One Novel Hydraulic Actuating System for the Lower-Body Exoskeleton 被引量:5
2
作者 Maowen Sun Xiaoping Ouyang +2 位作者 Jouni Mattila Huayong Yang Gang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期20-29,共10页
The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centraliz... The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times. 展开更多
关键词 hydraulic actuating system(HAS) Lower-body exoskeletons Lightweight and integrated system identification Working mode test
下载PDF
Modeling and Parameter Sensitivity Analysis of Valve‑Controlled Helical Hydraulic Rotary Actuator System 被引量:1
3
作者 Kun Zhang Junhui Zhang +5 位作者 Minyao Gan Huaizhi Zong Ximeng Wang Hsinpu Huang Qi Su Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期257-274,共18页
As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is propri... As a type of hydraulic rotary actuator,a helical hydraulic rotary actuator exhibits a large angle,high torque,and compact structure;hence,it has been widely used in various fields.However,its core technology is proprietary to several companies and thus has not been disclosed.Furthermore,the relevant reports are primarily limited to the component level.The dynamic characteristics of the output when a helical rotary actuator is applied to a closed-loop system are investigated from the perspective of driving system design.Two main aspects are considered:one is to establish a reliable mathematical model and the other is to consider the effect of system parameter perturbation on the output.In this study,a detailed mechanical analysis of a helical rotary hydraulic cylinder is first performed,factors such as friction and load are considered,and an accurate dynamic model of the actuator is established.Subsequently,considering the nonlinear characteristics of pressure flow and the dynamic characteristics of the valve,a dynamic model of a valve-controlled helical rotary actuator angle closed-loop system is described based on sixth-order nonlinear state equations,which has never been reported previously.After deriving the system model,a sensitivity analysis of 23 main parameters in the model with a perturbation of 10%is performed under nine operating conditions.Finally,the system dynamics model and sensitivity analysis results are verified via a prototype experiment and co-simulation,which demonstrate the reliability of the theoretical results obtained in this study.The results provide an accurate mathematical model and analysis basis for the structural optimization or control compensation of similar systems. 展开更多
关键词 Helical hydraulic rotary actuator Dynamic model Closed-loop system Sensitivity analysis Prototype experiment CO-SIMULATION
下载PDF
Closed Loop Hydraulic System and Its Effect on Actuator Design 被引量:1
4
作者 Karan Sotoodeh 《Journal of Marine Science and Application》 CSCD 2021年第2期333-342,共10页
Hydraulic systems provide a clean and stable supply of hydraulic fluid for subsea valves and actuators installed on the subsea bed in subsea production systems.Subsea control systems are used for contemporary subsea f... Hydraulic systems provide a clean and stable supply of hydraulic fluid for subsea valves and actuators installed on the subsea bed in subsea production systems.Subsea control systems are used for contemporary subsea fields instead of installing the control system on topside.Although all-electric subsea systems are state-of-the-art with benefits such as health,safety,and environment improvement,as well as efficiency and lower cost,hydraulic systems are still used for the development of many subsea fields.One of the main questions in the selection of a subsea hydraulic field is whether to choose an open or closed loop hydraulic system.The main characteristic of an open loop hydraulic system is that the hydraulic fluid is discharged into the marine environment during the actuation of the subsea valves.Conversely,the hydraulic fluid is returned to the topside facilities through an umbilical system in a closed loop system.Given that closed loop systems are more eco-friendly,the main question in this research is to examine the effect of the actuator connection of the closed loop system on actuator design.Two cases of actuated valves connected to a closed loop system are analyzed in this paper.The first is a 71/16-in.subsea slab gate valve in the pressure class of 517 bar with a linear spring return fail-safe close(FSC)actuator located on a manifold branch.The data indicates that the piston rod and cylinder diameter of the FSC linear actuator should be increased by some millimeters due to the accumulation of hydraulic oil at the bottom of the actuator.The hydraulic oil in the closed loop system helps in closing the actuator and spring force,so the spring constant and torque should be reduced as a result.The second case involves a 16-in.subsea ball valve in the pressure class of 517 bar with a double-acting fail-as-is rack and pinion actuator.The conclusion in this case is to avoid making any change in the design of double-acting actuator in connection to the closed loop system. 展开更多
关键词 Subsea hydraulic system Valves and actuators Closed loop hydraulic hydraulic actuators Actuators design modification Emission reduction
下载PDF
Precision Motion Control of Hydraulic Actuator Using Adaptive Back-Stepping Sliding Mode Controller
5
作者 Zhenshuai Wan Longwang Yue +1 位作者 Yanfeng Wang Pu Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1047-1065,共19页
Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic a... Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments. 展开更多
关键词 hydraulic actuator back-stepping control adaptive control model uncertainties
下载PDF
Study on Sealing Characteristics of Sliding Seal Assembly of Aircraft Hydraulic Actuator
6
作者 Weinan Li Saixin Shi +4 位作者 Hongxia Tang Liang Chen Jiawei Zhang Hao Tang Jianhua Zhao 《Instrumentation》 2024年第1期18-29,共12页
The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect i... The hydraulic actuator,known as the"muscle"of military aircraft,is responsible for flight attitude adjustment,trajectory control,braking turn,landing gear retracting and other actions,which directly affect its flight efficiency and safety.However,the sealing assembly often has the situation of over-aberrant aperture fit clearance or critical over-aberrant clearance,which increases the failure probability and degree of movable seal failure,and directly affects the flight efficiency and safety of military aircraft.In this paper,the simulation model of hydraulic actuator seal combination is established by ANSYS software,and the sealing principle is described.The change curve of contact width and contact pressure of combination seal under the action of high-pressure fluid is drawn.The effects of different oil pressure,fit clearance and other parameters on the sealing performance are analyzed.Finally,the accelerated life test of sliding seal components is carried out on the hydraulic actuator accelerated life test rig,and the surface morphology is compared and analyzed.The research shows that the O-ring is the main sealing element and the role of the check ring is to protect and support the O-ring to prevent damage caused by squeezing into the fit clearance,so the check ring bears a large load and is prone to shear failure.Excessive fit clearance is the main factor affecting the damage of the check ring,and the damage parts are mainly concentrated at the edge of the sealing surface.This paper provides a theoretical basis for the design of hydraulic actuator and the improvement of sealing performance. 展开更多
关键词 hydraulic actuator contact stress sealing characteristics maximum shear stress
下载PDF
Modeling and controlling of a flexible hydraulic manipulator 被引量:2
7
作者 李光 吴敏 《Journal of Central South University of Technology》 EI 2005年第5期578-583,共6页
A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the mode... A mathematical model was developed combining the dynamics of an Euler-Bernoulli beam, described by the assumed-mode method and hydraulic circuit dynamics. Only one matrix, termed drive Jacobian, was needed in the modeling of interaction between hydraulic circuit and flexible manipulator mechanism. Furthermore, a new robust controller based on mentioned above dynamic model was also considered to regulate both flexural vibrations and rigid body motion. The proposed controller combined sliding mode and backstepping techniques to deal with the nonlinear system with uncertainties. The sliding mode control was used to achieve an asymptotic joint angle and vibration regulation by providing a virtual force while the backstepping technique was used to regulate the spool position of a hydraulic valve to provide the required control force. Simulation results are presented to show the stabilizing effect and robustness of this control strategy. 展开更多
关键词 dynamic modeling flexible manipulator sliding mode control backstepping control hydraulic actuator
下载PDF
Theoretical Investigation of the Viscous Damping Coefficient of Hydraulic Actuators 被引量:1
8
作者 Ming-Hui Huang Qing Pan +2 位作者 Yi-Bo Li Peng-Da Ma Jun Ma 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期829-842,共14页
The viscous damping coefficient (VDC) of hydraulic actuators is crucial for system modeling, control and dynamic characteristic analysis. Currently, the resear- ches on hydraulic actuators focus on behavior assessme... The viscous damping coefficient (VDC) of hydraulic actuators is crucial for system modeling, control and dynamic characteristic analysis. Currently, the resear- ches on hydraulic actuators focus on behavior assessment, promotion of control performance and efficiency. However, the estimation of the VDC is difficult due to a lack of study. Firstly, using two types of hydraulic cylinders, behaviors of the VDC are experimentally examined with velocities and pressure variations. For the tested plunger type hydraulic cylinder, the exponential model B = αν-β (α 〉 0, β 〉 0) or B = α1e-β1ν+α2e-β2ν(α1, α2 〉 0, β1,β2 〉 0), fits the relation between the VDC and velocities for a given pressure of chamber with high precision. The magnitude of the VDC decreases almost linearly under certain velocities when increasing the chamber pressure from 0.6 MPa to 6.0 MPa. Furthermore, the effects of the chamber pressures on the VDC of piston and plunge type hydraulic cylinders are different due to different sealing types. In order to investi- gate the VDC of a plunger type hydraulic actuator drasti- cally, a steady-state numerical model has been developed to describe the mechanism incorporating tandem seal lubrica- tion, back-up ring related friction behaviors and shear stress of fluid. It is shown that the simulated results of VDC agreewith the measured results with a good accuracy. The pro- posed method provides an instruction to predict the VDC in system modeling and analysis. 展开更多
关键词 hydraulic actuator Viscous dampingcoefficient FRICTION Tandem seal
下载PDF
Using Double-acting Hydraulic Actuators for Weight Reduction in the Offshore Industry
9
作者 Karan Sotoodeh 《Journal of Marine Science and Application》 CSCD 2022年第2期159-169,共11页
An actuator is a machine or component installed on the top of an industrial valve for automatically moving and controlling the valve.The performance of a valve is largely dependent on its actuator.An actuator can be h... An actuator is a machine or component installed on the top of an industrial valve for automatically moving and controlling the valve.The performance of a valve is largely dependent on its actuator.An actuator can be hydraulic,pneumatic,or electrical.This paper focuses on hydraulic actuators,which are common for large size and high-pressure class ball valves.Hydraulic actuators can be either single-acting(spring return)or double-acting.Single-acting actuators return to safe mode in case of failure.However,double-acting actuators have a fail-as-is function and cannot keep the valves open or closed in case of failure.This research used a combination of theoretical and experimental approaches.The paper discusses two case studies in offshore industry projects in which double-acting hydraulic actuators were selected instead of single-acting,and possible design impacts are discussed.A theoretical review is given in three papers about operating torque for ball valves,optimization of shutdown valve actuator weight,and design and analysis of hydraulic actuators.These three papers were selected for review to connect the valve required torque with actuator sizing and selection,finding practical approaches to optimize the actuator weight as well as develop a theoretical model to calculate the actuator thickness and dimensions for the 38”CL1500 ball valve in the Johan Sverdrup project.The proposed formulas and calculations used for sizing the 38”CL1500 ball valves were validated through a finite element analysis model. 展开更多
关键词 Valve automation hydraulic actuator Quarter turn movement Single acting Double acting Offshore Industry
下载PDF
High-g Shocking Testing of the Martlet Wireless Sensing System
10
作者 Xi Liu Xinjun Dong +3 位作者 Yang Wang Lauren Stewart Jacob Dodson Bryan Joyce 《Sound & Vibration》 2018年第3期6-11,共6页
This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,w... This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,with clock frequency programmable up to 90 MHz.The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation.In addition,the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards.In this study,a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system(MEMS)high-g accelerometers.Besides low-pass and highpass filters,amplification gains are also implemented on the high-g accelerometer interface board.Laboratory impact experiments are conducted to validate the performance of the Martlet wireless sensing system with the high-g accelerometer board.The results of this study show that the performance of the wireless sensing system is comparable to the cabled system. 展开更多
关键词 Shock test wireless sensors data acquisition system hydraulic blast actuator Martlet wireless sensing unit
下载PDF
Research on bionic quadruped robot based on hydraulic driver
11
作者 李满天 Jiang Zhenyu +1 位作者 Guo Wei Sun Lining 《High Technology Letters》 EI CAS 2015年第1期8-14,共7页
A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high ... A prototype of hydraulically powered quadruped robot is presented. The aim of the research is to develop a versatile robot platform which could travel fleetly in outdoor terrain with long time of en- durance and high load carrying ability. The current version is 1. lm long and 0.48m wide, and weights about 150kg. Each leg has four rotational joints driven by hydraulic cylinders and one pas- sive translational joint with spring. The torso carries the control system and the power system. A no- vel control algorithm is developed based on a Spring-Loaded Inverted Pendulum model and the prin- ciple of joint function separation. The robot can not only cross a 150mm high obstacle in static gait and trot at 2.5km/h and l km/h on the level-ground and 10°sloped-terrain respectively, but also au- tomatically keep balanced under lateral disturbance. In this paper, the mechanical structure and control systems are also discussed. Simulations and experiments are carried out to validate the design and algorithms. 展开更多
关键词 legged robots locomotion control quadruped robot trotting gait hydraulic actuation
下载PDF
Output feedback control and parameters influence analysis of active suspension electro-hydraulic servo actuator
12
作者 张伟 ZHAO Dingxuan GONG Mingde 《High Technology Letters》 EI CAS 2023年第2期159-165,共7页
The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordin... The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters. 展开更多
关键词 active suspension NONLINEAR hydraulic servo actuator output feedback
下载PDF
Active Disturbance Rejection Control of Hydraulic Quadruped Robots Rotary Joints for Improved Impact Resistance
13
作者 Huaizhi Zong Zhixian Yang +6 位作者 Xiu Yu Junhui Zhang Jikun Ai Qixin Zhu Feng Wang Qi Su Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS 2024年第5期439-452,共14页
Hydraulic actuated quadruped robots have bright application prospects and significant research values in unmanned area investigation,disaster rescue and other scenarios,due to the advantages of high payload and high p... Hydraulic actuated quadruped robots have bright application prospects and significant research values in unmanned area investigation,disaster rescue and other scenarios,due to the advantages of high payload and high power to weight ratio.Among these fields,inevitable collision of robots may occur when contact with unknown objects,step on empty objects,or collapse,all of which have an impact on the working hydraulic system.To overcome the unknown external disturbances,this paper proposes an active disturbance rejection control(ADRC)strategy of double vane hydraulic rotary actuators for the hip joints of the quadruped robots.Considering the order of the valve-controlled actuator model,a three-stage tracking differentiator,a four-stage extended state observer,and a state error feedback controller are designed relatively,and the extended state observer is adopted to observe and compensate the uncertainty of external load torque of the system.The effectiveness of the ADRC method is verified in simulation environment and a single joint experimental platform.Moreover,the impact experiments of the limb leg unit are carried out after introducing the proposed ADRC strategy into hip joint,the limb leg unit of quadruped robots presents better impact resistance ability. 展开更多
关键词 Quadruped robot Active disturbance rejection control Extended state observer Impact resistance hydraulic rotary actuator
下载PDF
Proportional-integral-derivative control of nonlinear half-car electro-hydraulic suspension systems
14
作者 John E. D. EKORU Jimoh O. PEDRO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第6期401-416,共16页
This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force ... This paper presents the development of a proportional-integral-derivative (PID)-based control method for application to active vehicle suspension systems (AVSS). This method uses an inner PID hydraulic actuator force control loop, in combination with an outer PID suspension travel control loop, to control a nonlinear half-car AVSS. Robustness to model uncertainty in the form of variation in suspension damping is tested, comparing performance of the AVSS with a passive vehicle suspension system (PVSS), with similar model parameters. Spectral analysis of suspension system model output data, obtained by performing a road input disturbance frequency sweep, provides frequency response plots for both nonlinear vehicle suspension systems and time domain vehicle responses to a sinusoidal road input disturbance on a smooth road. The results show the greater robustness of the AVSS over the PVSS to parametric uncertainty in the frequency and time domains. 展开更多
关键词 Force control Proportional-integral-derivative (PID) control Nonlinear half-car Active vehicle suspension system (AVSS) hydraulic actuator dynamics Model uncertainty
原文传递
Design and Optimization of Actuator for HT-25 Multifunctional Loader
15
作者 Md. Al Imran Tapu Joy Howlader +2 位作者 Md. Shahriar Sujan Md. Jahangir Alam Md. Mehedi Hassan 《World Journal of Engineering and Technology》 2023年第4期874-892,共19页
To break down the development interaction of the working gadget of the multi-practical wheel loader and to compute the heap of each part, the Denavit-Hartenberg strategy was applied to build up the kinematics of the i... To break down the development interaction of the working gadget of the multi-practical wheel loader and to compute the heap of each part, the Denavit-Hartenberg strategy was applied to build up the kinematics of the instrument model. Also, all the while, set up the elements model of dynamic framework. A multi-body element programming MSC, ADAMS and its active module were applied to assemble component power through a pressure framework reenactment model. An entirety working cycle interaction of the functioning gadget of the wheel loader was mimicked, and the investigation results thoroughly show the development interaction of the functional device and the stacked state of each part, and check the mechanical properties of the working gadget and dynamic execution water-driven framework effectively. 展开更多
关键词 Multifunctional Loader hydraulic Circuit CAD Power system hydraulic Actuator and Pump
下载PDF
Design and identification of a double-acting piezoelectric-hydraulic hybrid actuator
16
作者 Junjian ZHANG Zhihua FENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期456-467,共12页
Traditional single-acting piezoelectric-hydraulic hybrid actuators usually have the problem of inertial force caused by flow pulsation of the liquid,which degrades their output performance.To suppress or solve the ass... Traditional single-acting piezoelectric-hydraulic hybrid actuators usually have the problem of inertial force caused by flow pulsation of the liquid,which degrades their output performance.To suppress or solve the associated inertial force and enhance its output capabilities,this paper proposes a new type of double-acting piezoelectric-hydraulic hybrid actuator with four check valves acting as mechanical diodes.The new hybrid actuator was fabricated and its output performance was tested.When the voltage is 700 Vp-pand the bias pressure is 2 MPa,the pulsation ratesδof the new actuator at 400 Hz,500 Hz and 600 Hz are 2.29,2.08 and 1.78,respectively,whileδof the single-acting hybrid actuator under the same conditions are 10.98,11.05 and 17.12.Therefore,the liquid pulsation rate of the new hybrid actuator is significantly reduced,which is beneficial for improving the flow uniformity and weakening the influence of inertial force on the hybrid actuator.This strategy ultimately leads to a maximum no-load velocity of 168.1 mm/s at 600 Hz and a maximum blocking force of 141 N at 450 Hz for the new hybrid actuator.In addition,this strategy has the potential to be used in other electrohydrostatic actuators to improve their performance. 展开更多
关键词 DOUBLE-ACTING Flow pulsation Inertial force Piezoelectric actuators Piezoelectric devices Piezoelectric hydraulic actuation Piezoelectric pump
原文传递
Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator 被引量:17
17
作者 YAO Jianyong JIAO Zongxia +2 位作者 YAO Bin SHANG Yaoxing DONG Wenbin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第5期766-775,共10页
This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear proper... This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved. 展开更多
关键词 hydraulic load simulator adaptive control robust control nonlinear control hydraulic actuators Lyapunov functions
原文传递
Friction compensation for low velocity control of hydraulic flight motion simulator: A simple adaptive robust approach 被引量:12
18
作者 Yao Jianyong Jiao Zongxia Han Songshan 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期814-822,共9页
Low-velocity tracking capability is a key performance of flight motion simulator (FMS), which is mainly affected by the nonlinear friction force. Though many compensation schemes with ad hoc friction models have bee... Low-velocity tracking capability is a key performance of flight motion simulator (FMS), which is mainly affected by the nonlinear friction force. Though many compensation schemes with ad hoc friction models have been proposed, this paper deals with low-velocity control without friction model, since it is easy to be implemented in practice. Firstly, a nonlinear model of the FMS middle frame, which is driven by a hydraulic rotary actuator, is built. Noting that in the low velocity region, the unmodeled friction force is mainly characterized by a changing-slowly part, thus a simple adaptive law can be employed to learn this changing-slowly part and compensate it. To guarantee the boundedness of adaptation process, a discontinuous projection is utilized and then a robust scheme is proposed. The controller achieves a prescribed output tracking transient performance and final tracking accuracy in general while obtaining asymptotic output tracking in the absence of modeling errors. In addition, a saturated projection adaptive scheme is proposed to improve the globally learning capability when the velocity becomes large, which might make the previous proposed projection-based adaptive law be unstable. Theoretical and extensive experimental results are obtained to verify the high-performance nature of the proposed adaptive robust control strategy. 展开更多
关键词 Adaptive control BACKSTEPPING Flight motion simulator Friction compensation hydraulic actuator Robust control
原文传递
Motion synchronization in a dual redundant HA/EHA system by using a hybrid integrated intelligent control design 被引量:4
19
作者 Waheed Ur Rehman Wang Shaoping +2 位作者 Wang Xingjian Fan Lei Kamran Ali Shah 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期789-798,共10页
This paper presents an integrated fuzzy controller design approach to synchronize a dis- similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu- ator (EHA) with system unce... This paper presents an integrated fuzzy controller design approach to synchronize a dis- similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu- ator (EHA) with system uncertainties and disturbances. The motion synchronous control system consists of a trajectory generator, an individual position controller for each actuator, and a fuzzy force tracking controller (FFTC) for both actuators. The trajectory generator provides the desired motion dynamics and designing parameters of the trajectory which are taken according to the dynamic characteristics of the EHA. The position controller consists of a feed-forward controller and a fuzzy position tracking controller (FPTC) and acts as a decoupled controller, improving posi- tion tracking performance with the help of the feed-forward controller and the FPTC. The FFTC acts as a coupled controller and takes into account the inherent coupling effect. The simulation results show that the proposed controller not only eliminates initial force fighting by synchronizing the two actuators, but also improves disturbance rejection performance. 展开更多
关键词 Dissimilar redundant:Electro-hydrostatic actuator Fuzzy control:hydraulic actuator Motion synchronization Redundant systems
原文传递
Energy-saving and accurate motion control of a hydraulic actuator with uncertain negative loads 被引量:3
20
作者 Bobo HELIAN Zheng CHEN Bin YAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期253-264,共12页
Pump controlled hydraulic actuators are wildly used in the aerospace industry owing to the advantages of energy-saving and integrated configurations.Negative loads may occur to actuators due to external force loads or... Pump controlled hydraulic actuators are wildly used in the aerospace industry owing to the advantages of energy-saving and integrated configurations.Negative loads may occur to actuators due to external force loads or the inertial force when the actuator decelerates significantly.Uncertain negative load working conditions may cause cavitation,actuator vibration,and even instability to the motion control if the actuator is without sufficient meter-out damping.Various types of hydraulic configuration schemes have been proposed to deal with negative loads of hydraulic actuators.However,few of them can simultaneously achieve energy saving and high control accuracy.This study proposes an energy-saving and accurate motion tracking strategy for a hydraulic actuator with uncertain negative loads.The actuator’s motion is driven by a servomotor pump,which gives full play to the advantage of energy-saving.The meter-out pressure is controlled by proportional valves to provide the optimized meter-out damping.The nonlinear adaptive robust control law is designed,which guarantees the control stability and achieve high tracking accuracy.An integrated direct/indirect adaptation law obtains satisfactory parameter estimations and model compensation for asymptotic motion tracking.Comparative experiments under different working conditions were performed to validate the advantages of the proposed control strategy. 展开更多
关键词 Adaptive robust control hydraulic actuator Meter-out throttling Motion control Servomotor pump
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部