The working principle of a new hydraulic breaker operated jointly by gas and hydraulic flow which has a reasonable structure, high efficiency and long piston life-span, is analyzed, and the optimal power distribution ...The working principle of a new hydraulic breaker operated jointly by gas and hydraulic flow which has a reasonable structure, high efficiency and long piston life-span, is analyzed, and the optimal power distribution ratio of the sealed nitrogen gas to the high-pressure oil in the process of piston impacting is studied. Through theoretical analysis, optimization simulation and detailed calculation, it is determined that the impact system has optimal mechanical performance and highest efficiency when the distribution ratio φ is between 0.3 and 0.5. The theoretical result is also verified by repeated tests.展开更多
Energy consumed by distribution valves causes an energy loss for the output energy of hydraulic breakers, which has a significant influence on its efficiency. A new type of distribution valve used for hydraulic breake...Energy consumed by distribution valves causes an energy loss for the output energy of hydraulic breakers, which has a significant influence on its efficiency. A new type of distribution valve used for hydraulic breakers, de- signed to reduce energy consumption, is analyzed on the basis of the operating principle and energy loss of the current distribution valve. The new distribution valve adopts a cone valve and the optimization technique of unequal open de- gree for the valve port. Theoretical calculations and analyses have proven that the new distribution valve can reduce en- ergy loss by 9.0127J, or energy consumption by 31%, during an impact cycle and the efficiency of the hydraulic breaker can be raised by 4.5%. It has the following characteristics: little leakage, little pressure loss and low energy consump- tion.展开更多
The structure and operational principle on a new type reversing valve of hydraulic breaker are introduced. The nonlinear mathematic model and simulation model of the new type reversing valve are built. The dynamic sim...The structure and operational principle on a new type reversing valve of hydraulic breaker are introduced. The nonlinear mathematic model and simulation model of the new type reversing valve are built. The dynamic simulation research of the new type reversing valve is conducted. The effects of the system parameters on the working performance are researched systematically and deeply. The regular understanding on the motion of the reversing valve is obtained, which provides theoretical basis for the innovation and manufacturing of a new generation of hydraulic breaker reversing valve.展开更多
基金This project is supported by National Natural Science Foundation of China(No.50374071).
文摘The working principle of a new hydraulic breaker operated jointly by gas and hydraulic flow which has a reasonable structure, high efficiency and long piston life-span, is analyzed, and the optimal power distribution ratio of the sealed nitrogen gas to the high-pressure oil in the process of piston impacting is studied. Through theoretical analysis, optimization simulation and detailed calculation, it is determined that the impact system has optimal mechanical performance and highest efficiency when the distribution ratio φ is between 0.3 and 0.5. The theoretical result is also verified by repeated tests.
基金Project 50374071 supported by National Natural Science Foundation of China
文摘Energy consumed by distribution valves causes an energy loss for the output energy of hydraulic breakers, which has a significant influence on its efficiency. A new type of distribution valve used for hydraulic breakers, de- signed to reduce energy consumption, is analyzed on the basis of the operating principle and energy loss of the current distribution valve. The new distribution valve adopts a cone valve and the optimization technique of unequal open de- gree for the valve port. Theoretical calculations and analyses have proven that the new distribution valve can reduce en- ergy loss by 9.0127J, or energy consumption by 31%, during an impact cycle and the efficiency of the hydraulic breaker can be raised by 4.5%. It has the following characteristics: little leakage, little pressure loss and low energy consump- tion.
文摘The structure and operational principle on a new type reversing valve of hydraulic breaker are introduced. The nonlinear mathematic model and simulation model of the new type reversing valve are built. The dynamic simulation research of the new type reversing valve is conducted. The effects of the system parameters on the working performance are researched systematically and deeply. The regular understanding on the motion of the reversing valve is obtained, which provides theoretical basis for the innovation and manufacturing of a new generation of hydraulic breaker reversing valve.