At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to ana...At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to analyze hydraulic mounts for a rapid and accurate understanding of the influence of the different mounting parameters on the dynamic stiffness and loss angle.The aims of this study were to investigate the nonlinear dynamic characteristics of a hydraulic mount,and to identify the parameters that affect the dynamic stiffness and loss angle using MATLAB software programs to obtain the influence curves of the parameters,so as to use suitable parameters as the basis for vibration analysis.A nonlinear mechanical model of a hydraulic mount was established according to the basic principles of fluid dynamics.The dynamic stiffness and loss angle of the dimensionless expression were proposed.A numerical calculation method for the dynamic performance evaluation index of the hydraulic mount was derived.A one-to-one correspondence was established between the structural parameters and peak frequency of the evaluation index.The accuracy and applicability of the mechanical model were verified by the test results.The results demonstrated the accuracy of the nonlinear mechanical model of the hydraulic mount,and the vehicle driving comfort was greatly improved by the optimization of the structural parameters.展开更多
A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed...A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed The experimental research which is emphasized on the blowing stroke is also performed It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working Especially it possesses better dynamic characteristics展开更多
It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement...It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement the impact experiment underground and analyze the response characteristic.Therefore,a dynamic impact experiment for the entire hydraulic support was proposed in this paper,where a 1:2 reducedscale model of hydraulic support was designed and its response characteristics under dynamic impact load were analyzed.Firstly,a comprehensive monitoring scheme was proposed to achieve an effective monitoring for dynamic response of hydraulic support.Secondly,a multi-scale impact experiment was carried out for the entire hydraulic support and dynamic behaviors of hydraulic support under the multi-scale impact load were revealed by experimental data.Then a dynamic impact experiment of the entire hydraulic support was simulated in ADAMS with the same experiment conditions,and the experimental and simulation data were verified mutually.Finally,the characteristics of energy conversion and dissipation of the entire experiment system after impact were analyzed.The experiment results showed that the impact resistance properties of hydraulic support largely depended on the initial support conditions and different vertical rigidities affected energy distribution proportion of the entire support system.展开更多
Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and disc...Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.展开更多
The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is...The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is presented. The mechanical and fluid subsystems of all valves are investigated, including their interactions. Model validation of the electro-hydraulic valve system is performed by comparing the simulated and measured pressure curves. The dynamic characteristics of the electro-hydraulic clutch shift control system with different supply pressures and different fluid temperatures are simulated and evaluated. It is found that pipes which are often ignored between the electro-hydraulic valve system and the clutch piston,have strong influence on clutch piston chamber pressures. In order to satisfy the required time and reduce the fluctuation of the clutch piston chamber pressures,the orifices' diameters and valve structure are optimized.展开更多
Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the expe...Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the experimental data show that the dynamic characteristics of MR mount such as dynamic stiffness and loss angles vary distinctly as the excitation frequency, and MR fluids as one type of attracting controllable fluids are fit for hydraulic engine mounts. The author advises to work out potentialities of MR fluids, the semi control or active control MR fluids filled hydraulic engine mount must be developed.展开更多
提出利用 MATL AB语言的 SIMU L INK软件包对液压系统进行动态仿真的方法。介绍了SIMU L INK软件包的特点 ,并以阀控液压缸为例建立了液压系统的动态模型 ,给出了仿真模型 ,详细介绍了如何利用 SIMU L INK对液压系统的动态特性进行仿真...提出利用 MATL AB语言的 SIMU L INK软件包对液压系统进行动态仿真的方法。介绍了SIMU L INK软件包的特点 ,并以阀控液压缸为例建立了液压系统的动态模型 ,给出了仿真模型 ,详细介绍了如何利用 SIMU L INK对液压系统的动态特性进行仿真。利用 SIMUL NK进行动态仿真的步骤是 :首先建立液压系统的动态模型 ,其次建立仿真模型 ,然后对系统的参数初始化 ,最后进行仿真。同时讨论了影响液压系统动态特性的主要因素。结果表明 ,SIMUL展开更多
文摘At present,research on hydraulic mounts has mainly focused on the prediction of the dynamic stiffness and loss angle.Compared to the traditional finite element analysis method,the programming method can be used to analyze hydraulic mounts for a rapid and accurate understanding of the influence of the different mounting parameters on the dynamic stiffness and loss angle.The aims of this study were to investigate the nonlinear dynamic characteristics of a hydraulic mount,and to identify the parameters that affect the dynamic stiffness and loss angle using MATLAB software programs to obtain the influence curves of the parameters,so as to use suitable parameters as the basis for vibration analysis.A nonlinear mechanical model of a hydraulic mount was established according to the basic principles of fluid dynamics.The dynamic stiffness and loss angle of the dimensionless expression were proposed.A numerical calculation method for the dynamic performance evaluation index of the hydraulic mount was derived.A one-to-one correspondence was established between the structural parameters and peak frequency of the evaluation index.The accuracy and applicability of the mechanical model were verified by the test results.The results demonstrated the accuracy of the nonlinear mechanical model of the hydraulic mount,and the vehicle driving comfort was greatly improved by the optimization of the structural parameters.
文摘A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed The experimental research which is emphasized on the blowing stroke is also performed It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working Especially it possesses better dynamic characteristics
基金supported by National Key R&D Program of China for the 13th Five-Year Plan(No.2017YFC0603005)National Natural Science Foundation of China(Nos.51874174and 51834006)。
文摘It is significant to research the impact resistance properties of hydraulic support due to its key support role in the fully mechanized mining face.However,it is difficult for the entire hydraulic support to implement the impact experiment underground and analyze the response characteristic.Therefore,a dynamic impact experiment for the entire hydraulic support was proposed in this paper,where a 1:2 reducedscale model of hydraulic support was designed and its response characteristics under dynamic impact load were analyzed.Firstly,a comprehensive monitoring scheme was proposed to achieve an effective monitoring for dynamic response of hydraulic support.Secondly,a multi-scale impact experiment was carried out for the entire hydraulic support and dynamic behaviors of hydraulic support under the multi-scale impact load were revealed by experimental data.Then a dynamic impact experiment of the entire hydraulic support was simulated in ADAMS with the same experiment conditions,and the experimental and simulation data were verified mutually.Finally,the characteristics of energy conversion and dissipation of the entire experiment system after impact were analyzed.The experiment results showed that the impact resistance properties of hydraulic support largely depended on the initial support conditions and different vertical rigidities affected energy distribution proportion of the entire support system.
文摘Using hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle as a simulation example, the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle were simulated and discussed with SIMULINK software and hydraulic control theory. The results show that the dynamic characteristics of hydraulic power steering system are improved obviously by using bladder accumulator, the hydraulic power steering system of model EIMCO 922 load-haul-dump vehicle generates vibration at the initial stage under the normal steering condition of pulse input, and its static response time is 0.25 s shorter than that without bladder accumulator. Under the normal steering working condition, the capacity of steering accumulator for absorbing pulse is directly proportional to the cross section area of connecting pipeline, and inversely proportional to the length of connecting pipeline. At the same time, the precharge pressure of nitrogen in steering accumulator should be 60%80% of the rated minimum working pressure of hydraulic power steering system. Under the abnormal steering working condition, the steering cylinder piston may obtain higher motion velocity, and the dynamic response velocity of hydraulic power steering system can be increased by reducing the pressure drop of hydraulic pipelines between the accumulator and steering cylinder and by increasing the rated pressure of hydraulic power steering system, but the dynamic characteristics of hydraulic power steering system in load-haul-dump vehicle have nothing to do with the precharge pressure of nitrogen in steering accumulator.
基金National Natural Science Foundation of China(No.51405010)National Science and Technology Support Program,China(No.2011BAG09B00)
文摘The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is presented. The mechanical and fluid subsystems of all valves are investigated, including their interactions. Model validation of the electro-hydraulic valve system is performed by comparing the simulated and measured pressure curves. The dynamic characteristics of the electro-hydraulic clutch shift control system with different supply pressures and different fluid temperatures are simulated and evaluated. It is found that pipes which are often ignored between the electro-hydraulic valve system and the clutch piston,have strong influence on clutch piston chamber pressures. In order to satisfy the required time and reduce the fluctuation of the clutch piston chamber pressures,the orifices' diameters and valve structure are optimized.
文摘Using magnetorheological (MR) fluids in hydraulic engine mount for damping vehicle noise and vibration is opposed firstly, the structure of passive type and its mechanical model are described. The analysis of the experimental data show that the dynamic characteristics of MR mount such as dynamic stiffness and loss angles vary distinctly as the excitation frequency, and MR fluids as one type of attracting controllable fluids are fit for hydraulic engine mounts. The author advises to work out potentialities of MR fluids, the semi control or active control MR fluids filled hydraulic engine mount must be developed.