In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwi...In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.展开更多
An effective controller and compensator is designed by using the system identification and constant structure theory to realize the effective control. The experimental results indicate the extraneous torque can be dec...An effective controller and compensator is designed by using the system identification and constant structure theory to realize the effective control. The experimental results indicate the extraneous torque can be decreased by 90% and the characteristics can be improved greatly by means of this kind of method.展开更多
A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of...A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.展开更多
This paper presents the development and application of an innovative code to extract in an automated way data from the thermo-hydraulic simulator Olga.The results show that the tool can significantly reduce the time n...This paper presents the development and application of an innovative code to extract in an automated way data from the thermo-hydraulic simulator Olga.The results show that the tool can significantly reduce the time needed for the data extraction procedure and increase the reliability of results due to the fact that there is no more the need of the human operator.Moreover,during the data extraction phase,the Olga code is available for running different simulations allowing to optimize the use of this resource.展开更多
Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on th...Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.展开更多
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by...With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods.展开更多
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid ...Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they ...To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.展开更多
Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitat...Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitation of the preparation method.In this study,the method of photocuring additive manufacturing was used to prepare the complex casting mould from transparent photosensitive resin.The pouring test was carried out under different centrifugal conditions,and the filling process of the gating system,support bars and other positions in the vertical direction was recorded and analyzed.The experimental results show that the internal liquid level and the filling process of the test piece prepared by this method can be observed clearly.The angle between the liquid surface and the horizontal plane in the test piece gradually increases as the centrifugal rotational speed increases,which means the filling process is carried out from outside to inside at high rotational speed.The velocity of the fluid entering the runner increases with the increase of rotational speed,but the filling speeds is less affected by the centrifugal speed at other positions.The liquid flow is continuous and stable during the forward filling process,without splashing or interruption of liquid droplets.展开更多
The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among chan...The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.展开更多
This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear proper...This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.展开更多
This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obsta...This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obstacles in putting forward appropriate requirements of HLS. Traditional research overemphasizes the optimization of parameters and methods for HLS controllers. It lacks deliberation because experimental results and project experiences indicate different ultimate performance of a specific HLS. When the actuator paired with this HLS is replaced, the dynamic response and tracing precision of this HLS also change, and sometimes the whole system goes so far as to lose control. Based on the influence analysis of the preceding phenomena, a theory about matching design of aerocraft actuator with HLS is presented, together with two paired new concepts of "Standard Actuator" and "Standard HLS". Further research leads to seven important conclusions of matching design, which suggest that appropriate stiffness and output torque of HLS should be carefully designed and chosen for an actuator. Simulation results strongly support that the proposed principle of matching design can be anticipated to be one of the design criteria for HLS, and successfully used to explain experimental phenomena and project experiences.展开更多
In this study, the damage-plasticity model for concrete that was verified by the model experiment was used to calculate the damage to a spiral case structure based on the damage mechanics theory. The concrete structur...In this study, the damage-plasticity model for concrete that was verified by the model experiment was used to calculate the damage to a spiral case structure based on the damage mechanics theory. The concrete structure surrounding the spiral case was simulated with a three-dimensional finite element model. Then, the distribution and evolution of the structural damage were studied. Based on investigation of the change of gap openings between the steel liner and concrete structure, the impact of the non-uniform variation of gaps on the load-beating ratio between the steel liner and concrete structure was analyzed. The comparison of calculated results of the simplified and simulation algorithms shows that the simulation algorithm is a feasible option for the calculation of spiral case structures. In addition, the shell-spring model was introduced for optimization analysis, and the results were reasonable.展开更多
The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simu...The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model.The variation coefficient(CV) was defined to evaluate the flow uniformity of the seven-strand tundish.An optimized FCD configuration was proposed on the basis of the evaluation of experimental results.It is concluded that a turbulence inhibitor(TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish.In addition,the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone.After optimizing the configuration of FCDs,the variation coefficient reduces below 20%of the mean value,and the average proportion of dead zone is just 14.6%;in addition,the temperature fluctuation between the strands could be controlled within 0.6 K.In summary,the uniformity of flow and temperature in the seven-strand tundish is greatly improved.展开更多
A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-...A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command,but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output(MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators.Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.展开更多
In order to verify the flow interference at the fracture intersections, a group of hydraulic simulations of crossing flow was carried out. The manifold interference effects at the intersection of fractures on water fl...In order to verify the flow interference at the fracture intersections, a group of hydraulic simulations of crossing flow was carried out. The manifold interference effects at the intersection of fractures on water flow has been confirmed extensively either in the normal or in the oblique intersected tubes as well as in the intersected tubes of either equal or variant diameters. Consequently, suggest that the fissure network can no longer be taken as a set of solitary fractures, but as a set of elementary intersected fractures. The deflection effect at fracture intersections on the water flow should be taken into consideration when is dealt with any theory related to the water migration in fractures.展开更多
In order to determine water losses in irrigation canals,a systematic approach was developed,consisting of two main components:a seepage simulation model and a hydraulic simulation model.The SEEP/W module of the Geo-St...In order to determine water losses in irrigation canals,a systematic approach was developed,consisting of two main components:a seepage simulation model and a hydraulic simulation model.The SEEP/W module of the Geo-Studio software was used to simulate the seepage rate,and the Hydrologic Engineering Center-River Analysis System(HEC-RAS)hydrodynamic model was used for hydraulic simulation.Different operation scenarios were designed to investigate all possible situations in daily operation of water distribution and delivery systems.The seepage simulation results show that the seepage losses were higher at the bottom and corners of the canal,because the hydraulic gradient was affected by the hydraulic load.The hydraulic simulation results show that due to physical and management infrastructure(using non-automated and operator-based regulation structures),operational losses accounted for a significant volume of losses compared to seepage losses.In most operation scenarios,the maximum seepage loss was 10%,and the remaining 90%was related to operational losses.It is concluded that any factor(decrease or increase of inflow to the canal)that causes an increase or decrease of operational losses is ultimately a determining factor in reducing or increasing total losses.Therefore,management approaches should be adopted to improve performance of the system and reduce losses,especially operational losses,by improving the operation methods of water level regulation and off-take structures.展开更多
The paper presents a new modeling method applied to fault diagnosis for constant linear closed-loop system by taking the impulse response series as the system model, and provides the calculation process of the method ...The paper presents a new modeling method applied to fault diagnosis for constant linear closed-loop system by taking the impulse response series as the system model, and provides the calculation process of the method and output of model. The high frequency part of the pulse series, in the method, is reversed so as not to lose the frequency information of the pulse series in its transfer function. On the other hand, the method can also avoid the disadvantage that the learning results of neural network are uncertain every time. In the last part, the application with random disturbance of digital simulation and practical system shows that the modeling method is high accurate and suitable to be applied in fault diagnosis area.展开更多
During the past years,the recovery of unconventional gas formation has attracted lots of attention and achieved huge success.To produce gas from the low-permeability unconventional formations,hydraulic fracturing tech...During the past years,the recovery of unconventional gas formation has attracted lots of attention and achieved huge success.To produce gas from the low-permeability unconventional formations,hydraulic fracturing technology is essential and critical.In this paper,we present the development of a three-dimensional thermalhydraulic-mechanical numerical simulator for the simulation of hydraulic fracturing operations in tight sandstone reservoirs.Our simulator is based on integrated finite difference(IFD)method.In this method,the simulation domain is subdivided into sub domains and the governing equations are integrated over a sub domain with flux terms expressed as an integral over the sub domain boundary using the divergence theorem.Our simulator conducts coupled thermal-hydraulic-mechanical simulation of the initiation and extension of hydraulic fractures.It also calculates the mass/heat transport of injected hydraulic fluids as well as proppants.Our simulator is able to handle anisotropic formations with multiple layers.Our simulator has been validated by comparing with an analytical solution as well as Ribeiro and Sharma model.Our model can simulate fracture spacing effect on fracture profile when combining IFD with Discontinuous Displacement Method(DDM).展开更多
The cultivated area of jujube in Xinjiang has increased rapidly in recent years.While the jujube harvest by hand has the shortage of high labor intensity,low efficiency and high labor cost,in addition,the harvesting m...The cultivated area of jujube in Xinjiang has increased rapidly in recent years.While the jujube harvest by hand has the shortage of high labor intensity,low efficiency and high labor cost,in addition,the harvesting machinery applying to dwarf and dense planting mode of jujubes is unavailable in Xinjiang.The 4ZZ-4A2 based on the full-hydraulic self-propelled jujube harvester was designed to solve the above problems.The harvester was mainly composed of a frame,a vibrating device,a jujube collecting and conveying device,an air separation device,a steering system,a hydraulic system and a jujube suction device and was capable of completing vibration,collection,conveying,cleaning and sundries removal work of jujubes through one step.The jujubes dropped on the ground were picked up at the same time.The AMESim simulation software was adopted to perform simulation analysis on the overall hydraulic system.The results showed that the speed of the vibrating motor was stable at about 650 r/min(the corresponding vibration frequency is 10.83 Hz)with the torque of 80 N·m,the speed of the conveyor motor was stable at 77 r/min with the torque of 77 N·m;the speed of the fan motor was stable at 54 r/min with the torque of 53.6 N·m;the speed of the walking motor fluctuated around 100 r/min with the torque of about 1000 N·m;the hydraulic steering system responded rapidly and could satisfy the actual working requirements of the jujube harvester.The jujube garden test results showed that the harvester could reach to the optimum harvesting effect when running at the speed of 0.5 m/s.Under such speed,the ground jujube picking rate was 45.1%,the tree jujube harvesting rate was 93.2%,the loss rate was 2.9%,and the damage rate was 0.9%.This study can provide theoretical basis and technical support for the jujube harvester.展开更多
文摘In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.
文摘An effective controller and compensator is designed by using the system identification and constant structure theory to realize the effective control. The experimental results indicate the extraneous torque can be decreased by 90% and the characteristics can be improved greatly by means of this kind of method.
基金Sponsored by the National 985 Project Foundation of China
文摘A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.
文摘This paper presents the development and application of an innovative code to extract in an automated way data from the thermo-hydraulic simulator Olga.The results show that the tool can significantly reduce the time needed for the data extraction procedure and increase the reliability of results due to the fact that there is no more the need of the human operator.Moreover,during the data extraction phase,the Olga code is available for running different simulations allowing to optimize the use of this resource.
文摘Hydropower gains increasing importance as a steerable and controllable power source in a renewable energy mix and deregulated markets. Although hydropower produces fossil-free energy, it has a significant impact on the local environment. This review investigates the effects of flow alterations by hydropower on the downstream river system and the possibilities to integrate these effects into hydraulic modeling. The results show that various effects of flow regulation on the ecosystem, but also social and economic effects on related communities were observed in the last decades. The application of hydraulic models for investigations of ecological effects is common. Especially hydraulic effects and effects on fish were extensively modeled with the help of hydraulic 1D- and 2D-simulations. Current applications to investigate social and economic effects integrated into hydraulic modeling are meanwhile limited. Approaches to realizing this integration are presented. Further research on the economic valuation of ecosystems and integration of social and economic effects to hydraulic models is necessary to develop holistic tools to support decision-making on sustainable hydropower.
文摘With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods.
基金supported by the Natural Sciences and Engineering Research Council of Canada through Discovery Grant 341275 (G. Grasselli) and Engage EGP 461019-13
文摘Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Project(51175518)supported by the National Natural Science Foundation of China
文摘To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.
基金This work was financially supported by the National Science and Technology Major Project of China(Grant No.J2019-Ⅶ-0002-0142)the National Natural Science Foundation of China(Grant No.52175333).
文摘Hydraulic simulation is one of the critical methods to research the filling mechanism of molten metal in the casting process.However,it only performs on test pieces with relatively simple structures due to the limitation of the preparation method.In this study,the method of photocuring additive manufacturing was used to prepare the complex casting mould from transparent photosensitive resin.The pouring test was carried out under different centrifugal conditions,and the filling process of the gating system,support bars and other positions in the vertical direction was recorded and analyzed.The experimental results show that the internal liquid level and the filling process of the test piece prepared by this method can be observed clearly.The angle between the liquid surface and the horizontal plane in the test piece gradually increases as the centrifugal rotational speed increases,which means the filling process is carried out from outside to inside at high rotational speed.The velocity of the fluid entering the runner increases with the increase of rotational speed,but the filling speeds is less affected by the centrifugal speed at other positions.The liquid flow is continuous and stable during the forward filling process,without splashing or interruption of liquid droplets.
文摘The design of a compound control is presented for the servo system of hydraulic flight motion simulator, which suffers from highly nonlinear dynamics, large parameter time-variation and severe load coupling among channels. The compound control is composed of a robust feedback controller and a feedforward compensator. The design aim is to achieve high tracking perform- ance even in the presence of considerable uncertainty, external disturbance and load coupling among channels. Toward this aim the feedback controller for rejecting perturbation and disturbance is designed by usingμ synthesis optimization technique and the feedforward compensator for compensating time lag of dynamic system is established based on the basic idea of zero phase error tracking. To validate the proposed control strategy, simulations and experiments are implemented, and show that the result- ing system is highly robust against model perturbation and possesses excellent capability of suppressing the load coupling and improving the tracking performance.
基金National Natural Science Foundation for Distinguished Young Scholars of China (50825502)
文摘This paper deals with the high performance force control of hydraulic load simulator. Many previous works for hydraulic force control are based on their linearization equations, but hydraulic inherent nonlinear properties and uncertainties make the conven- tional feedback proportional-integral-derivative control not yield to high-performance requirements. In this paper, a nonlinear system model is derived and linear parameterization is made for adaptive control. Then a discontinuous projection-based nonlin- ear adaptive robust force controller is developed for hydraulic load simulator. The proposed controller constructs an asymptoti- cally stable adaptive controller and adaptation laws, which can compensate for the system nonlinearities and uncertain parame- ters. Meanwhile a well-designed robust controller is also developed to cope with the hydraulic system uncertain nonlinearities. The controller achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncer- tainties and uncertain nonlinearities; in the absence of uncertain nonlinearities, the scheme also achieves asymptotic tracking performance. Simulation and experiment comparative results are obtained to verify the high-performance nature of the proposed control strategy and the tracking accuracy is greatly improved.
基金the Aviation Science Foundation (No. 20110951009) of ChinaNational Nature Science Foundation for Distinguished Young Scholars ( No. 50825502 ) of China for the financial support
文摘This paper intends to provide theoretical basis for matching design of hydraulic load simulator (HLS) with aerocraft actuator in hardware-in-loop test, which is expected to help actuator designers overcome the obstacles in putting forward appropriate requirements of HLS. Traditional research overemphasizes the optimization of parameters and methods for HLS controllers. It lacks deliberation because experimental results and project experiences indicate different ultimate performance of a specific HLS. When the actuator paired with this HLS is replaced, the dynamic response and tracing precision of this HLS also change, and sometimes the whole system goes so far as to lose control. Based on the influence analysis of the preceding phenomena, a theory about matching design of aerocraft actuator with HLS is presented, together with two paired new concepts of "Standard Actuator" and "Standard HLS". Further research leads to seven important conclusions of matching design, which suggest that appropriate stiffness and output torque of HLS should be carefully designed and chosen for an actuator. Simulation results strongly support that the proposed principle of matching design can be anticipated to be one of the design criteria for HLS, and successfully used to explain experimental phenomena and project experiences.
基金supported by the National Natural Science Foundation of China (Grant No. 51079020)the He'nan Provincial Research Foundation for Basic and Advanced Technology (Grant No. 122300410001)the Foundation of He'nan Educational Committee (Grant No. 13A570715)
文摘In this study, the damage-plasticity model for concrete that was verified by the model experiment was used to calculate the damage to a spiral case structure based on the damage mechanics theory. The concrete structure surrounding the spiral case was simulated with a three-dimensional finite element model. Then, the distribution and evolution of the structural damage were studied. Based on investigation of the change of gap openings between the steel liner and concrete structure, the impact of the non-uniform variation of gaps on the load-beating ratio between the steel liner and concrete structure was analyzed. The comparison of calculated results of the simplified and simulation algorithms shows that the simulation algorithm is a feasible option for the calculation of spiral case structures. In addition, the shell-spring model was introduced for optimization analysis, and the results were reasonable.
基金supported by the National Natural Science Foundation of China (No.51404018)the Fundamental Research Funds for the Central Universities of China (No.FRF-TP-15-008A3)
文摘The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model.The variation coefficient(CV) was defined to evaluate the flow uniformity of the seven-strand tundish.An optimized FCD configuration was proposed on the basis of the evaluation of experimental results.It is concluded that a turbulence inhibitor(TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish.In addition,the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone.After optimizing the configuration of FCDs,the variation coefficient reduces below 20%of the mean value,and the average proportion of dead zone is just 14.6%;in addition,the temperature fluctuation between the strands could be controlled within 0.6 K.In summary,the uniformity of flow and temperature in the seven-strand tundish is greatly improved.
基金supported by the National Basic Research Program of China(No.2014CB046406)the National Natural Science Foundation of China(No.51235002)
文摘A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command,but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output(MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators.Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.
文摘In order to verify the flow interference at the fracture intersections, a group of hydraulic simulations of crossing flow was carried out. The manifold interference effects at the intersection of fractures on water flow has been confirmed extensively either in the normal or in the oblique intersected tubes as well as in the intersected tubes of either equal or variant diameters. Consequently, suggest that the fissure network can no longer be taken as a set of solitary fractures, but as a set of elementary intersected fractures. The deflection effect at fracture intersections on the water flow should be taken into consideration when is dealt with any theory related to the water migration in fractures.
文摘In order to determine water losses in irrigation canals,a systematic approach was developed,consisting of two main components:a seepage simulation model and a hydraulic simulation model.The SEEP/W module of the Geo-Studio software was used to simulate the seepage rate,and the Hydrologic Engineering Center-River Analysis System(HEC-RAS)hydrodynamic model was used for hydraulic simulation.Different operation scenarios were designed to investigate all possible situations in daily operation of water distribution and delivery systems.The seepage simulation results show that the seepage losses were higher at the bottom and corners of the canal,because the hydraulic gradient was affected by the hydraulic load.The hydraulic simulation results show that due to physical and management infrastructure(using non-automated and operator-based regulation structures),operational losses accounted for a significant volume of losses compared to seepage losses.In most operation scenarios,the maximum seepage loss was 10%,and the remaining 90%was related to operational losses.It is concluded that any factor(decrease or increase of inflow to the canal)that causes an increase or decrease of operational losses is ultimately a determining factor in reducing or increasing total losses.Therefore,management approaches should be adopted to improve performance of the system and reduce losses,especially operational losses,by improving the operation methods of water level regulation and off-take structures.
文摘The paper presents a new modeling method applied to fault diagnosis for constant linear closed-loop system by taking the impulse response series as the system model, and provides the calculation process of the method and output of model. The high frequency part of the pulse series, in the method, is reversed so as not to lose the frequency information of the pulse series in its transfer function. On the other hand, the method can also avoid the disadvantage that the learning results of neural network are uncertain every time. In the last part, the application with random disturbance of digital simulation and practical system shows that the modeling method is high accurate and suitable to be applied in fault diagnosis area.
文摘During the past years,the recovery of unconventional gas formation has attracted lots of attention and achieved huge success.To produce gas from the low-permeability unconventional formations,hydraulic fracturing technology is essential and critical.In this paper,we present the development of a three-dimensional thermalhydraulic-mechanical numerical simulator for the simulation of hydraulic fracturing operations in tight sandstone reservoirs.Our simulator is based on integrated finite difference(IFD)method.In this method,the simulation domain is subdivided into sub domains and the governing equations are integrated over a sub domain with flux terms expressed as an integral over the sub domain boundary using the divergence theorem.Our simulator conducts coupled thermal-hydraulic-mechanical simulation of the initiation and extension of hydraulic fractures.It also calculates the mass/heat transport of injected hydraulic fluids as well as proppants.Our simulator is able to handle anisotropic formations with multiple layers.Our simulator has been validated by comparing with an analytical solution as well as Ribeiro and Sharma model.Our model can simulate fracture spacing effect on fracture profile when combining IFD with Discontinuous Displacement Method(DDM).
基金Thanks the National Natural Science Foundation of China-Based on Self-excited Vibration and Force Compensation Theory Jujube Vibration Recovery Mechanism Research(51365049)National Key Research and Development Plan-Jujube Harvesting Technical Equipment and Development(2016YFD0701504)for supporting the project,and Xinjiang Production&Construction Corps major scientific research projects:The optimization and pilot test of self-propelled harvester of dwarf and close planting jujube(2013AA001-3).
文摘The cultivated area of jujube in Xinjiang has increased rapidly in recent years.While the jujube harvest by hand has the shortage of high labor intensity,low efficiency and high labor cost,in addition,the harvesting machinery applying to dwarf and dense planting mode of jujubes is unavailable in Xinjiang.The 4ZZ-4A2 based on the full-hydraulic self-propelled jujube harvester was designed to solve the above problems.The harvester was mainly composed of a frame,a vibrating device,a jujube collecting and conveying device,an air separation device,a steering system,a hydraulic system and a jujube suction device and was capable of completing vibration,collection,conveying,cleaning and sundries removal work of jujubes through one step.The jujubes dropped on the ground were picked up at the same time.The AMESim simulation software was adopted to perform simulation analysis on the overall hydraulic system.The results showed that the speed of the vibrating motor was stable at about 650 r/min(the corresponding vibration frequency is 10.83 Hz)with the torque of 80 N·m,the speed of the conveyor motor was stable at 77 r/min with the torque of 77 N·m;the speed of the fan motor was stable at 54 r/min with the torque of 53.6 N·m;the speed of the walking motor fluctuated around 100 r/min with the torque of about 1000 N·m;the hydraulic steering system responded rapidly and could satisfy the actual working requirements of the jujube harvester.The jujube garden test results showed that the harvester could reach to the optimum harvesting effect when running at the speed of 0.5 m/s.Under such speed,the ground jujube picking rate was 45.1%,the tree jujube harvesting rate was 93.2%,the loss rate was 2.9%,and the damage rate was 0.9%.This study can provide theoretical basis and technical support for the jujube harvester.