The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the...The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.展开更多
“Human-elephant conflict(HEC)”,the alarming issue,in present day context has attracted the attention of environmentalists and policy makers.The rising conflict between human beings and wild elephants is common in Bu...“Human-elephant conflict(HEC)”,the alarming issue,in present day context has attracted the attention of environmentalists and policy makers.The rising conflict between human beings and wild elephants is common in Buxa Tiger Reserve(BTR)and its adjoining area in West Bengal State,India,making the area volatile.People’s attitudes towards elephant conservation activity are very crucial to get rid of HEC,because people’s proximity with wild elephants’habitat can trigger the occurrence of HEC.The aim of this study is to conduct an in-depth investigation about the association of people’s attitudes towards HEC with their locational,demographic,and socio-economic characteristics in BTR and its adjoining area by using Pearson’s bivariate chi-square test and binary logistic regression analysis.BTR is one of the constituent parts of Eastern Doors Elephant Reserve(EDER).We interviewed 500 respondents to understand their perceptions to HEC and investigated their locational,demographic,and socio-economic characteristics including location of village,gender,age,ethnicity,religion,caste,poverty level,education level,primary occupation,secondary occupation,household type,and source of firewood.The results indicate that respondents who are living in enclave forest villages(EFVs),peripheral forest villages(PFVs),corridor village(CVs),or forest and corridor villages(FCVs),mainly males,at the age of 18–48 years old,engaged with agriculture occupation,and living in kancha and mixed houses,have more likelihood to witness HEC.Besides,respondents who are illiterate or at primary education level are more likely to regard elephant as a main problematic animal around their villages and refuse to participate in elephant conservation activity.For the sake of a sustainable environment for both human beings and wildlife,people’s attitudes towards elephants must be friendly in a more prudent way,so that the two communities can live in harmony.展开更多
Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the c...Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the cost and duration of such tests have significantly increased, magnifying their impact on model development. This article follows the process of the modal testing practice of the Gravity-1 rocket, reviewing and summarizing the design process of the rocket's dynamic characteristics. Initially, the article introduces common modeling techniques for launch rockets, including the mass-beam model and the hybrid element model. It then discusses the relationship between the structural dynamics model of the launch rocket and modal testing, aiming to reduce testing costs through refined structural dynamics modeling methods. Subsequently, the article describes the dynamic characteristics design process of the Gravity-1 carrier rocket, categorizes structural parameters, and studies how the selection of structural parameters affects the predicted dynamic characteristics of the rocket. Finally, it elaborates on the design of the modal testing scheme and the dynamic characteristics design based on the test data.展开更多
A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect...A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.展开更多
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur...The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.展开更多
By using the meteorological data in the pollution boundary layer which was observed in two ground observation sites:coast and land in the river outlet area of Grand Liao River during January-February in 2007,the daily...By using the meteorological data in the pollution boundary layer which was observed in two ground observation sites:coast and land in the river outlet area of Grand Liao River during January-February in 2007,the daily change characteristics of pollute boundary layer in winter in the area were discussed. The results showed that the pollute boundary layer in the river outlet area of Grand Liao River was affected by the sea and land. In the certain weather condition,maybe the sea-land breeze appeared in the low altitude which was below 200 m in the coastal zone. The stability change in the different height in the coastal zone was more stable than in the land zone,and the wind field change in the area was mainly in 300 m low altitude. At night,the temperature inversion often appears in the area,and the thickness of temperature inversion layer is stably during 200-300 m. The thermal internal boundary layer penetrated deeply into the land about 10 km,and the height could reach 800 m. The atmospheric diffusion ability in the coastal area was weaker and stronger in the land area.展开更多
[Objective] This paper researched how to use specific approach to select quantitative characteristics which would be listed in the DUS Test Guideline of Tagetes L. [Method] With the aid of statistic analysis, the unif...[Objective] This paper researched how to use specific approach to select quantitative characteristics which would be listed in the DUS Test Guideline of Tagetes L. [Method] With the aid of statistic analysis, the uniformity, stability and correlation of 14 pre-selected characteristics were analyzed. [Result] The expression of peduncle length of terminal flower had low uniformity within a variety; the expres- sion of main stem thickness was not stable in continuous growing cycles; there were four pairs of quantitative characteristics which are (very) significantly correlated, namely, leaf length and leaf width, diameter of flower head and length of outer ligu- late floret, number of ligulate floret whorls and number of ligulate floret, leaf width and width of terminal leaflet of pinnate leaves. Based on the requirements of char- acteristic selection and the results of statistic analysis, five characteristics including peduncle length of terminal flower, thickness of the main stem, leaf width, length of outer ligulate floret and number of ligulate floret were deleted. [Conclusion] For the first time, this paper introduced the application of statistic analysis on the selection of quantitative characteristics.展开更多
[Objective] This study aimed to investigate the functions and properties of the preliminarily determined characteristics listed in DUS test guideline of Tagetes L., and explore the representativeness and comprehensive...[Objective] This study aimed to investigate the functions and properties of the preliminarily determined characteristics listed in DUS test guideline of Tagetes L., and explore the representativeness and comprehensiveness of this group of characteristics in DUS test. [Method] Based on the functions and properties of the characteristics, the described plant part (s), observation stage, expression pattern and observation method of each characteristic were analyzed to illustrate the representativeness and comprehensiveness of the combination of this group of characteristics in above functions and properties. [Result] As for described plant part(s), there are 5 characteristics describing plant as a whole, 3 characteristics describing stem, 6 characteristics describing leaf, 23 characteristics describing flower and 1 characteristic describing physiological feature. As for observation stage, there are 1 characteristic needing to be observed in the stage of seedling, 1 characteristic in the stage of beginning of flowering and other 36 characteristics in the stage of fully flowering. As for the expression pattern, there are 10 qualitative characteristics, 9 pseudo-qualitative characteristics and 19 quantitative characteristics. As for the observation method, there are 30 characteristics using VG as the observation method, and 8 characteristics using MS. [Conclusion] In view of the variation and morphological properties of marigold, this group of characteristics are representative and comprehensive, and ensure the accuracy and easiness of DUS test of Tagetes L., thereby achieving the reasonable combination of characteristics in described plant parts, observation stages, expression patterns and observation methods.展开更多
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b...Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.展开更多
The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of...The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.展开更多
Objective:To look into the glucose tolerance test characteristics and determine complications in non-gestational diabetes pregnant subjects.Methods:From 2006 to 2009 all non-gestational diabetes mellitus(non-CDM)pregn...Objective:To look into the glucose tolerance test characteristics and determine complications in non-gestational diabetes pregnant subjects.Methods:From 2006 to 2009 all non-gestational diabetes mellitus(non-CDM)pregnant women who delivered macrosomia at the North Australia's Townsville Hospital were retrospectively reviewed by extracting data from clinical record.Glucose tolerance tests results were analysed in the light of an earlier diagnosis of non-GDM.Results:Ninety-one non-CDM mothers with macrosomia were studied and compared with 41normoglycemic subjects without macrosomia.Of the subjects with non-GDM macrosomia,45(49.4%)had normal SO g glucose challenge test(GCT)without further testing,another 8(8.8%)had abnormal GCT but normal 75 g oral glucose tolerance test(OGTT).A total of 4(4.4%)subjects had normal GCT and OGTT.Interestingly.14 out of 16(87.5%)subjects who were tested with OGTT owing to past history of macrosomia had normal results but delivered macrosomic babies.Only 12 subjects had both GCT and OGTT,the rest of the cohort had either of the two tests.Subjects with non-CDM macrosomia had higher frequency of neonatal hypoglycaemia 34%as compared to 10%in nonmacrosomic babies(P=0.003).Other feto-maternal complications were similar in both groups.Conclussions:No significant pattern of glucose tolerance characteristics was identified in nonGDM mothers with macrosomic babies.In spite of being normoglycemic significant neonatal hypoglycaemia was recorded in non-GDM macrosomic babies.Further prospective studies on a larger population are needed to verify our findings.展开更多
Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias t...Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.展开更多
To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at differen...To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.展开更多
Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characterist...Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characteristics since their expressions vary in different degrees. Taking the development of DUS Test Guideline of Ranunculus asiaticus L. as an example, this paper applied statistic-based approaches for the analyses of quantitative characteristics. We selected 9 quantitative characteristics from 18 pre-selected characteristics, based on within-variety uniformity, stability between different growing cycles, and correlation among characteristics, by the analyses of coefficient of variation, paired-samples t-test and partial correlation. The expression ranges of the 9 selected quantitative characteristics were divided into different states using descriptive statistics and distribution frequency of varieties. Eight of the 9 selected quantitative characteristics were categorized as standard characteristics as they showed one peak in distribution frequency of 120 varieties in various expressions of the characteristics, whereas, plant height can be categorized as grouping characteristic since it gave two peaks, and can group the varieties into pot and cut varieties. Finally, box-plot was applied to visually select the example varieties, and varieties 7, 12, and 28 were determined as the example varieties for plant height. The methods described in this paper are effective for the selection of quantitative characteristics, division of expression ranges, and selection of example varieties in Ranunculus asiaticus L. for DUS test, and may also be interest for other plant genera.展开更多
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure g...The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.展开更多
Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-disp...Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.展开更多
A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics...A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics of flexible piles and the surrounding soil. It was found that piles deformed elastically under reservoir operation, and the soil in front of piles was gradually separated from piles. The movement of the pile heads exceeded that of the soil between and behind piles. This phenomenon was further studied by a large-scale physical model test to gain insights into the pile-soil interaction. The displacement relationship between pile heads and the surrounding soil is in good agreement with the field data. The physical model test shows that the deformation process of pile-reinforced landslides can be divided into two stages: firstly, when the piles head movement exceeds soil movement, the soil arching is mainly affected by the deflection of the piles, the arches between and behind piles bent upwards;but when the soil movement exceeds piles head movement, the arches near the upslope and downslope bent downwards and upwards, respectively. Furthermore, the different deformation of two adjacent piles and the pile stiffness influenced the arch’s shape and formation;the flexible piles exhibit great coordinated deformation with the landslide, and caused the soil arch on the downslope.展开更多
The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation ...The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation of the well level when we make Slug test. Both the permeation parameters and frequency parameters, i.e., natural period and damping coefficients of well aquifer, have been calculated on the basis of vibration theory by means of the oscillation curves. Not only this has given a new method, but also the different response of well level to seismic waves has been explained by it in theory.展开更多
Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composit...Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composite sucker rods are prone to debone and fracture.The connected characteristics are less considered,so the failure mechanism of the joint is still unclear.Based on the cohesive zone model(CZM)and the Johnson-Cook constitutive model,a novel full-scale numerical model of the joint with composite sucker rod was established,and verified by pull-out experiments.The mechanical properties and slip characteristics of the joint were studied,and the damaged procession of the joint was explored.The results showed that:a)the numerical model was in good agreement with the experimental results,and the error is within 5%;b)the von Mises stress,shear stress,and interface stress distributed symmetrically along the circumferential path increased gradually from the fixed end to the loading end;c)the first-bonded interface near the loading end was damaged at first,followed by debonding of the second-bonded interface,leading to the complete shear fracture of the epoxy,and resulted in the debonding of the joint with composite sucker rod,which can provide a theoretical basis for the structural design and optimization of the joint.展开更多
To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and ...To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52174101,52474169,and 42477202)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515011634 and 2023A1515030243)the Department of Science and Technology of Guangdong Province,China(No.2021ZT09G087).
文摘The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.
文摘“Human-elephant conflict(HEC)”,the alarming issue,in present day context has attracted the attention of environmentalists and policy makers.The rising conflict between human beings and wild elephants is common in Buxa Tiger Reserve(BTR)and its adjoining area in West Bengal State,India,making the area volatile.People’s attitudes towards elephant conservation activity are very crucial to get rid of HEC,because people’s proximity with wild elephants’habitat can trigger the occurrence of HEC.The aim of this study is to conduct an in-depth investigation about the association of people’s attitudes towards HEC with their locational,demographic,and socio-economic characteristics in BTR and its adjoining area by using Pearson’s bivariate chi-square test and binary logistic regression analysis.BTR is one of the constituent parts of Eastern Doors Elephant Reserve(EDER).We interviewed 500 respondents to understand their perceptions to HEC and investigated their locational,demographic,and socio-economic characteristics including location of village,gender,age,ethnicity,religion,caste,poverty level,education level,primary occupation,secondary occupation,household type,and source of firewood.The results indicate that respondents who are living in enclave forest villages(EFVs),peripheral forest villages(PFVs),corridor village(CVs),or forest and corridor villages(FCVs),mainly males,at the age of 18–48 years old,engaged with agriculture occupation,and living in kancha and mixed houses,have more likelihood to witness HEC.Besides,respondents who are illiterate or at primary education level are more likely to regard elephant as a main problematic animal around their villages and refuse to participate in elephant conservation activity.For the sake of a sustainable environment for both human beings and wildlife,people’s attitudes towards elephants must be friendly in a more prudent way,so that the two communities can live in harmony.
文摘Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the cost and duration of such tests have significantly increased, magnifying their impact on model development. This article follows the process of the modal testing practice of the Gravity-1 rocket, reviewing and summarizing the design process of the rocket's dynamic characteristics. Initially, the article introduces common modeling techniques for launch rockets, including the mass-beam model and the hybrid element model. It then discusses the relationship between the structural dynamics model of the launch rocket and modal testing, aiming to reduce testing costs through refined structural dynamics modeling methods. Subsequently, the article describes the dynamic characteristics design process of the Gravity-1 carrier rocket, categorizes structural parameters, and studies how the selection of structural parameters affects the predicted dynamic characteristics of the rocket. Finally, it elaborates on the design of the modal testing scheme and the dynamic characteristics design based on the test data.
基金Project(2014CB046403)supported by the National Basic Research Program of ChinaProject(2013BAF07B01)supported by the National Key Technology R&D Program of China
文摘A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA04Z416)the Key Project of the National Natural Science Foundation of China(No.50538020)+2 种基金the National Science Fund for Distinguished Young Scholars(No.50725828)the National Natural Science Foundation of China for Young Scholars(No.50608017)the Ph.D. Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB.
基金Supported by The Special Project of Public Welfare Industry(Meteorology)of Science and Technology Ministry(GYHY200806020)The National Natural Science Fund(40975084)The Science Research Fund of Liaoning Meteorological Bureau(2008008)
文摘By using the meteorological data in the pollution boundary layer which was observed in two ground observation sites:coast and land in the river outlet area of Grand Liao River during January-February in 2007,the daily change characteristics of pollute boundary layer in winter in the area were discussed. The results showed that the pollute boundary layer in the river outlet area of Grand Liao River was affected by the sea and land. In the certain weather condition,maybe the sea-land breeze appeared in the low altitude which was below 200 m in the coastal zone. The stability change in the different height in the coastal zone was more stable than in the land zone,and the wind field change in the area was mainly in 300 m low altitude. At night,the temperature inversion often appears in the area,and the thickness of temperature inversion layer is stably during 200-300 m. The thermal internal boundary layer penetrated deeply into the land about 10 km,and the height could reach 800 m. The atmospheric diffusion ability in the coastal area was weaker and stronger in the land area.
基金Supported by Fund for Agro-scientific Research in the Public Interest(200903008-14)Chinese National 948 Program(2009-Z11)~~
文摘[Objective] This paper researched how to use specific approach to select quantitative characteristics which would be listed in the DUS Test Guideline of Tagetes L. [Method] With the aid of statistic analysis, the uniformity, stability and correlation of 14 pre-selected characteristics were analyzed. [Result] The expression of peduncle length of terminal flower had low uniformity within a variety; the expres- sion of main stem thickness was not stable in continuous growing cycles; there were four pairs of quantitative characteristics which are (very) significantly correlated, namely, leaf length and leaf width, diameter of flower head and length of outer ligu- late floret, number of ligulate floret whorls and number of ligulate floret, leaf width and width of terminal leaflet of pinnate leaves. Based on the requirements of char- acteristic selection and the results of statistic analysis, five characteristics including peduncle length of terminal flower, thickness of the main stem, leaf width, length of outer ligulate floret and number of ligulate floret were deleted. [Conclusion] For the first time, this paper introduced the application of statistic analysis on the selection of quantitative characteristics.
基金Supported by Special R&D Fund for National Public Service Sectors(Agriculture)of China(200903008-14)National 948 Project of China(2009-Z11)~~
文摘[Objective] This study aimed to investigate the functions and properties of the preliminarily determined characteristics listed in DUS test guideline of Tagetes L., and explore the representativeness and comprehensiveness of this group of characteristics in DUS test. [Method] Based on the functions and properties of the characteristics, the described plant part (s), observation stage, expression pattern and observation method of each characteristic were analyzed to illustrate the representativeness and comprehensiveness of the combination of this group of characteristics in above functions and properties. [Result] As for described plant part(s), there are 5 characteristics describing plant as a whole, 3 characteristics describing stem, 6 characteristics describing leaf, 23 characteristics describing flower and 1 characteristic describing physiological feature. As for observation stage, there are 1 characteristic needing to be observed in the stage of seedling, 1 characteristic in the stage of beginning of flowering and other 36 characteristics in the stage of fully flowering. As for the expression pattern, there are 10 qualitative characteristics, 9 pseudo-qualitative characteristics and 19 quantitative characteristics. As for the observation method, there are 30 characteristics using VG as the observation method, and 8 characteristics using MS. [Conclusion] In view of the variation and morphological properties of marigold, this group of characteristics are representative and comprehensive, and ensure the accuracy and easiness of DUS test of Tagetes L., thereby achieving the reasonable combination of characteristics in described plant parts, observation stages, expression patterns and observation methods.
基金the National Key Research and Development Program of China(Nos.2019YFE0118500 and 2019YFC1904304)National Natural Science Foundation of China(Nos.52104107 and U22A20598)Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.
基金This work was supported by the Fundamental Research Funds for the Central Universities,the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_0487)the National Natural Science Foundation of China(Grant Nos.41831278,and 51579081).
文摘The irregularity of jointed network poses a challenge to the determination of field mechanical param-eters of columnar jointed rock mass(CJRM),and a reasonable prediction of deformation and strength characteristics of CJRM is important for engineering construction.The Voronoi diagram and three-dimensional printing technology were used to make an irregular columnar jointed mold,and the irregular CJRM(ICJRM)specimens with different dip directions and dip angles were prepared.Uniaxial compression tests were performed,and the anisotropic strength and deformation characteristics of ICJRM were described.The failure modes and mechanisms were revealed in accordance with the final appearances of the ICJRM specimens.Based on the model test results,the empirical correlations for determining the field deformation and strength parameters of CJRM were derived using the dip angle and modified joint factor.The proposed empirical equations were used in the Baihetan Project,and the calculated mechanical parameters were compared with the field test results and those obtained from the tunneling quality index method.Results showed that the deformation parameters determined by the two proposed methods are all consistent with the field test results,and these two methods can also estimate the strength parameters effectively.
基金Supported in part by funds from Australia's James Cook University research infrastructure block grant(Grant No.RIBG 09-2009)
文摘Objective:To look into the glucose tolerance test characteristics and determine complications in non-gestational diabetes pregnant subjects.Methods:From 2006 to 2009 all non-gestational diabetes mellitus(non-CDM)pregnant women who delivered macrosomia at the North Australia's Townsville Hospital were retrospectively reviewed by extracting data from clinical record.Glucose tolerance tests results were analysed in the light of an earlier diagnosis of non-GDM.Results:Ninety-one non-CDM mothers with macrosomia were studied and compared with 41normoglycemic subjects without macrosomia.Of the subjects with non-GDM macrosomia,45(49.4%)had normal SO g glucose challenge test(GCT)without further testing,another 8(8.8%)had abnormal GCT but normal 75 g oral glucose tolerance test(OGTT).A total of 4(4.4%)subjects had normal GCT and OGTT.Interestingly.14 out of 16(87.5%)subjects who were tested with OGTT owing to past history of macrosomia had normal results but delivered macrosomic babies.Only 12 subjects had both GCT and OGTT,the rest of the cohort had either of the two tests.Subjects with non-CDM macrosomia had higher frequency of neonatal hypoglycaemia 34%as compared to 10%in nonmacrosomic babies(P=0.003).Other feto-maternal complications were similar in both groups.Conclussions:No significant pattern of glucose tolerance characteristics was identified in nonGDM mothers with macrosomic babies.In spite of being normoglycemic significant neonatal hypoglycaemia was recorded in non-GDM macrosomic babies.Further prospective studies on a larger population are needed to verify our findings.
基金Project(51508575)supported by the National Natural Science Foundation of ChinaProject(2011CB013802)supported by the National Basic Research Program of China+1 种基金Projects(2014M560652,2016T90764)supported by the China Postdoctoral Science FoundationProject(2015RS4006)supported by the Innovative Talents of Science and Technology Plan of Hunan Province,China
文摘Based on the similarity theory,a tunnel excavation simulation testing system under typical unsymmetrical loading conditions was established.Using this system,the failure mechanism of surrounding rock of shallow-bias tunnels with small clear distance was analyzed along with the load characteristics.The results show that:1) The failure process of surrounding rock of shallow-bias tunnels with small clear distance consists of structural and stratum deformation induced by tunnel excavation; Microfracture surfaces are formed in the tunnel surrounding rock and extend deep into the rock mass in a larger density; Tensile cracking occurs in shallow position on the deep-buried side,with shear slip in deep rock mass.In the meantime,rapid deformation and slip take place on the shallow-buried side until the surrounding rocks totally collapse.The production and development of micro-fracture surfaces in the tunnel surrounding rock and tensile cracking in the shallow position on the deep-buried side represent the key stages of failure.2) The final failure mode is featured by an inverted conical fracture with tunnel arch as its top and the slope at tunnel entrance slope as its bottom.The range of failure on the deep-buried side is significantly larger than that on the shallow-buried side.Such difference becomes more prominent with the increasing bias angle.What distinguishes it from the "linear fracture surface" model is that the model proposed has a larger fracture angle on the two sides.Moreover,the bottom of the fracture is located at the springing line of tunnel arch.3) The total vertical load increases with bias angle.Compared with the existing methods,the unsymmetrical loading effect in measurement is more prominent.At last,countermeasures are proposed according to the analysis results: during engineering process,1) The surrounding rock mass on the deep-buried side should be reinforced apart from the tunnel surrounding rock for shallow-buried tunnels with small clear distance; moreover,the scope of consolidation should go beyond the midline of tunnel(along the direction of the top of slope) by 4 excavation spans of single tunnel.2) It is necessary to modify the load value of shallow-bias tunnels with small clear distance.
基金Key Subject for Science Research and De-velopment Plan of Railway Ministry (No.2006G004-B)
文摘To simulate the fatigue characteristics of the pile-board structure under long-term dynamic load, using the in-situ dynamic testing system DTS-1, the forced vibration loading was repeated one million times at different cross-sections of the pile-board structure for high-speed railway. The dynamic deformation, permanent deformation and dynamic stress of main reinforcements were measured. The test results show that the dynamic responses of the pile-board structure almost did not vary with the forced vibration times under the simulated trainload. After one million times of forced vibration, the permanent deformations of the midspan section of intermediate span and midspan section of side span were 0.7 mm and 0. 6 mm, respectively, and there was no accumulative plastic deformation at the bearing section of intermediate span.
基金supported by the Special Fund for Agroscientific Research in the Public Interest of Ministry of Agriculture,China(200903008-14)
文摘Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characteristics since their expressions vary in different degrees. Taking the development of DUS Test Guideline of Ranunculus asiaticus L. as an example, this paper applied statistic-based approaches for the analyses of quantitative characteristics. We selected 9 quantitative characteristics from 18 pre-selected characteristics, based on within-variety uniformity, stability between different growing cycles, and correlation among characteristics, by the analyses of coefficient of variation, paired-samples t-test and partial correlation. The expression ranges of the 9 selected quantitative characteristics were divided into different states using descriptive statistics and distribution frequency of varieties. Eight of the 9 selected quantitative characteristics were categorized as standard characteristics as they showed one peak in distribution frequency of 120 varieties in various expressions of the characteristics, whereas, plant height can be categorized as grouping characteristic since it gave two peaks, and can group the varieties into pot and cut varieties. Finally, box-plot was applied to visually select the example varieties, and varieties 7, 12, and 28 were determined as the example varieties for plant height. The methods described in this paper are effective for the selection of quantitative characteristics, division of expression ranges, and selection of example varieties in Ranunculus asiaticus L. for DUS test, and may also be interest for other plant genera.
基金Project(51068002) supported by the National Natural Science Foundation of ChinaProject(10-046-14-1) supported by Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering,China
文摘The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.
基金Project(200612) supported by Hunan Province Transportation Department of China
文摘Large-scale field shear tests on ten specimens of the red-sandstone embankment at a highway in Hunan,China,were performed to examine mechanical characteristics and parameters of red-sandstone.The curves of thrust-displacement,failure mode,and shear strength parameters for red-sandstone with different water contents,different compactions,and different grain size distributions were obtained from the tests.A practical procedure of in-situ test for red-sandstone embankment was proposed to normalize the test equipment and test steps.Based on three-dimensional thrust-sliding limit equilibrium method,the formulas for calculating strength parameters of red-sandstone considering three-dimensional sliding surface were inferred.The results show that red-sandstone has typical complete curves of stress-strain,strain softening,which are caused by the special structure of red-sandstone;water content and compaction are important factors for strength and failure mode of red-sandstone;The average value of cohesion and internal friction angle of the specimens calculated by three-dimensional technique are 21.56 kPa and 29.29°,respectively,and those by traditional two-dimensional method are 25.52 kPa and 33.76°,respectively.
基金the Key Program of National Natural Science Foundation of China(No.41630643)the National Key Research and Development Program of China(No.2017YFC1501302)+2 种基金the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGCJ1701,1810491A26)the China Postdoctoral Science Foundation(No.2018M642952)the Postdoctoral International Exchange Program.
文摘A field monitoring system was established in an active river bank landslide in the Three Gorges area, China, and a consecutive monitoring for about 5 years were conducted to understand the displacement characteristics of flexible piles and the surrounding soil. It was found that piles deformed elastically under reservoir operation, and the soil in front of piles was gradually separated from piles. The movement of the pile heads exceeded that of the soil between and behind piles. This phenomenon was further studied by a large-scale physical model test to gain insights into the pile-soil interaction. The displacement relationship between pile heads and the surrounding soil is in good agreement with the field data. The physical model test shows that the deformation process of pile-reinforced landslides can be divided into two stages: firstly, when the piles head movement exceeds soil movement, the soil arching is mainly affected by the deflection of the piles, the arches between and behind piles bent upwards;but when the soil movement exceeds piles head movement, the arches near the upslope and downslope bent downwards and upwards, respectively. Furthermore, the different deformation of two adjacent piles and the pile stiffness influenced the arch’s shape and formation;the flexible piles exhibit great coordinated deformation with the landslide, and caused the soil arch on the downslope.
文摘The permeation parameters have been calculated by forefathers on the basis of permeation theory by means of the Slug test (Yin, Zheng, 1992) and the restoration curves of well level. We are interested in oscillation of the well level when we make Slug test. Both the permeation parameters and frequency parameters, i.e., natural period and damping coefficients of well aquifer, have been calculated on the basis of vibration theory by means of the oscillation curves. Not only this has given a new method, but also the different response of well level to seismic waves has been explained by it in theory.
基金Innovation fund project for graduate students of ChinaUniversity of Petroleum(East China)(No.22CX04032A)the Fundamental Research Funds for the CentralUniversities on this study is gratefully acknowledged+2 种基金the support of‘National Natural Science Foundation of China’(No.52304015)‘Postdoctoral Innovation Project of Shandong Province’(No.SDCX-ZG-202203098)‘Qingdao Postdoctoral Grant Project’(No.qdyy20210083).
文摘Composite sucker rods are widely used in oil fields because of light weight,high strength,and corrosion resistance.Bonded technology becomes the primary connection method of composites.However,the joints with composite sucker rods are prone to debone and fracture.The connected characteristics are less considered,so the failure mechanism of the joint is still unclear.Based on the cohesive zone model(CZM)and the Johnson-Cook constitutive model,a novel full-scale numerical model of the joint with composite sucker rod was established,and verified by pull-out experiments.The mechanical properties and slip characteristics of the joint were studied,and the damaged procession of the joint was explored.The results showed that:a)the numerical model was in good agreement with the experimental results,and the error is within 5%;b)the von Mises stress,shear stress,and interface stress distributed symmetrically along the circumferential path increased gradually from the fixed end to the loading end;c)the first-bonded interface near the loading end was damaged at first,followed by debonding of the second-bonded interface,leading to the complete shear fracture of the epoxy,and resulted in the debonding of the joint with composite sucker rod,which can provide a theoretical basis for the structural design and optimization of the joint.
基金supported by the 2018 Major Science and Technology Project of China Railway Construction Corporation Limited(No.2018-A01)the National Natural Science Foundation of China(No.51978588).
文摘To investigate the dynamic characteristics and long-term dynamic stability of the new subgrade structure of medium-low-speed(MLS)maglevs,cyclic vibration tests were performed under natural and rainfall conditions,and the dynamic response of the subgrade structure was monitored.The dynamic response attenuation characteristics along the depth direction of the subgrade were compared,and the distribution characteristics of the dynamic stress on the surface of the subgrade along the longitudinal direction of the line were analyzed.The critical dynamic stress and cumulative deformation were used as indicators to evaluate the long-term dynamic stability of the subgrade.Results show that water has a certain effect on the dynamic characteristics of the subgrade,and the dynamic stress and acceleration increase with the water content.With the dowel steel structure set between the rail-bearing beams,stress concentration at the end of the loaded beam can be prevented,and the diffusion distance of the dynamic stress along the longitudinal direction increases.The dynamic stress measured in the subgrade bed range is less than 1/5 of the critical dynamic stress.The postconstruction settlement of the subgrade after similarity ratio conversion is 3.94 mm and 7.72 mm under natural and rainfall conditions,respectively,and both values are less than the 30 mm limit,indicating that the MLS maglev subgrade structure has good long-term dynamic stability.