A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy ...A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.展开更多
针对传统机组组合研究中因模型不够完善、约束过于简化而引起的计算准确度低和系统安全性差的缺陷,建立了考虑潮流方程和水电精确出力的水火机组组合(hydrothermal unit commitment,HTUC)模型。围绕该模型,文中首先采用广义Benders分解...针对传统机组组合研究中因模型不够完善、约束过于简化而引起的计算准确度低和系统安全性差的缺陷,建立了考虑潮流方程和水电精确出力的水火机组组合(hydrothermal unit commitment,HTUC)模型。围绕该模型,文中首先采用广义Benders分解算法将其划分为一个混合整数线性规划主问题和一个非线性规划子问题;然后将该子问题按时段进一步分解为T个规模较小的子问题,T为调度周期。其中,主问题对应于传统的水火联合调度(hydrothermal scheduling,HTS),子问题则是包含电压、无功等变量的约束潮流(constrained power flow,CPF)。主子问题之间通过可行割进行协调,并以交替迭代的方式获得原问题的解。最后对含有46台火电机组、8个梯级水电厂的IEEE 118节点系统进行计算,测试结果表明所提算法能在较少的时间内获得高质量的解,从而为大规模机组组合问题的求解提供参考。展开更多
文摘A comparison analysis based method for computing the water consumption volume needed for electric energy production of optimal scheduling in hydro-thermal power systems is presented in this paper. The electric energy produced by hydroelectric plants and coal-fired plants is divided into 4 components: potential energy, kinetic energy, water-deep pressure energy and reservoir energy. A new and important concept, reservoir energy, is proposed, based on which is divided into a number of water bodies, for example 3 water bodies, and a reservoir is analyzed in a new way. This paper presents an optimal scheduling solution of elec-tric energy production of hydro-thermal power systems based on multi-factors analytic method, in which some important factors, such as load demand, reservoir in-flow, water consumption volume increment rate of hydroelectric plants or converted from coal-fired plants, and so on are given to model the objective function and the constraints. A study example with three simulation cases is carried out to illustrate flexibility, adapta-bility, applicability of the proposed method.
文摘针对传统机组组合研究中因模型不够完善、约束过于简化而引起的计算准确度低和系统安全性差的缺陷,建立了考虑潮流方程和水电精确出力的水火机组组合(hydrothermal unit commitment,HTUC)模型。围绕该模型,文中首先采用广义Benders分解算法将其划分为一个混合整数线性规划主问题和一个非线性规划子问题;然后将该子问题按时段进一步分解为T个规模较小的子问题,T为调度周期。其中,主问题对应于传统的水火联合调度(hydrothermal scheduling,HTS),子问题则是包含电压、无功等变量的约束潮流(constrained power flow,CPF)。主子问题之间通过可行割进行协调,并以交替迭代的方式获得原问题的解。最后对含有46台火电机组、8个梯级水电厂的IEEE 118节点系统进行计算,测试结果表明所提算法能在较少的时间内获得高质量的解,从而为大规模机组组合问题的求解提供参考。