Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the...Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9 years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9- year bioremediation.展开更多
Lubricants are very often found in nature under waste-oil forms and represent for the environment a real danger of pollution due to the difficulty of their biodegradation. The situation is especially worrying in most ...Lubricants are very often found in nature under waste-oil forms and represent for the environment a real danger of pollution due to the difficulty of their biodegradation. The situation is especially worrying in most developing countries in particular those of Sub-Saharan Africa due to the absence of regulation or control. The present work aims to isolate bacterial strains able to degrade hydrocarbons which can later be used in biotechnology for environments depollution. Oil-contaminated wastewater samples were collected in Ouagadougou city (Burkina Faso) and then used as source of bacterial isolation. Appropriate amounts of samples were inoculated to a mineral salt medium (MS) with Total Quartz 9000 oil as sole carbon and energy source and then incubated for enrichment, prior to microbe isolation. Two bacterial strains namely S2 and S7 were isolated from the enrichment cultures. The strains were tested for their ability to degrade other hydrocarbons (i.e. gasoline, diesel oil, brake oil) and for temperature, pH and salt concentration ranges for growth before their biochemical characteristics were defined. Based on their morphological, physiological and biochemical traits, strains S2 and S7 belong to Acinetobacter and Pseudomonas genera, respectively.展开更多
<span style="line-height:1.5;">Polycyclic aromatic hydrocarbons (PAHs) are important pollutants, whose biodegradation and bioremediation with microorganisms are the promising ways to clean environments...<span style="line-height:1.5;">Polycyclic aromatic hydrocarbons (PAHs) are important pollutants, whose biodegradation and bioremediation with microorganisms are the promising ways to clean environments and reduce their exposure to humans. Although the transportation of PAHs across bacterial membrane is the first step forwards their biodegradation, it receives less attention. In this mini-review, we explore which transport system for uptake of carbon sources can serve for </span><span style="line-height:1.5;">uptake of PAHs in bacteria, and try to uncover some patterns in their transport mechanisms. Collectively, 1) the major carbohydrate transport system, PTS, is unlikely to take PAHs because PAHs lack a hydroxy group for phosphorylation but aromatic acids are good candidates;2) PAHs could probably go through H<sup>+</sup> symporters, especially the low-molecular-weight PAHs, which are partially dissolvable in water;3) it is unlikely that PAHs can produce chemiosmotic ion gradients to go through uniporters;and 4) antiporters could serve as transporters to transport PAHs across bacterial membrane only after the metabolism of PAHs generates extra H<sup>+</sup> inside cell. Accordingly, the basic mechanism for uptake of PAHs is whether they can donate H<sup>+</sup> in order to generate an electrochemical proton gradient to go through symporters.展开更多
During the summer of Antarctic in 1993/1994, the species and amount of hydrocarbon bacteria of the Great Wall Bay and its adjacent sea area have been studied. Flavobacterium,Pseudomonas,Kurthia and Actinetobact...During the summer of Antarctic in 1993/1994, the species and amount of hydrocarbon bacteria of the Great Wall Bay and its adjacent sea area have been studied. Flavobacterium,Pseudomonas,Kurthia and Actinetobacter have been identified .The number of them varied from 3 cell/L to 1100 cell/L.The number in the inner bay is larger than that out of it.The dispersing is a very important way of the changing of hydrocarbon bacteria.展开更多
Surface water sources in the oil producing Niger Delta region of Nigeria are highly susceptible to pollution by petroleum hydrocarbons and so it is important to understand the microbial diversity of such ecosystems. W...Surface water sources in the oil producing Niger Delta region of Nigeria are highly susceptible to pollution by petroleum hydrocarbons and so it is important to understand the microbial diversity of such ecosystems. Water and sediment samples were collected between April-August, 2013 from Bodo creeks and taken to Environmental Microbiology laboratory of University of Portharcourt for analysis. A total of thirty aerobic heterotrophic bacterial strains isolated ranged from 3.0 - 7.0 × 104 cfu for surface water and 1.6 - 5.6 × 104 cfu for sediment samples of Bodo creek using serial dilution and spread plate technique. Pure cultures of bacteria were obtained on the basis of their morphological characteristics and subjected to biochemical tests and further classified on the basis of 16S rRNA gene sequence analysis. The DNA was isolated from size fractionated samples and the diversity of bacteria in each fraction was studied using PCR amplification of partial 16S rRNA. The sequences were submitted to NCBIGen bank for identification and assigning of accession numbers. The isolated aerobic heterotrophic bacteria belong to the families of Enterobacteriaceae, Bacilliceae, Alcaligenaceae, Pseudomonadaceae, Flavobactericeae and Planococcaceae.展开更多
This study was designed and carried out to characterize hydrocarbonoclastic microbial communities in soil polluted with artisanal refined hydrocarbon at Trans Amadi, Phalga Local Government Area of Rivers State, Niger...This study was designed and carried out to characterize hydrocarbonoclastic microbial communities in soil polluted with artisanal refined hydrocarbon at Trans Amadi, Phalga Local Government Area of Rivers State, Nigeria. Heterotrophic bacteria count ranged from 8.0 × 10<sup>5</sup> cfu/gm for sample TSAS1, and 2.1 × 10<sup>6</sup> cfu/gm for sample TSAS2 while TSAS3 was too numerous to count (TNTC). Hydrocarbon utilizing bacteria count ranged from 1.1 × 10<sup>5</sup> cfu/gm for TSAS1, and 5.9 × 10<sup>4</sup> cfu/gm for TSAS2, while TSAS3 was 5.4 × 10<sup>4</sup> cfu/gm. Physiochemical parameters of the soil were determined. The ranges obtained were pH 6.6, conductivity 125 μs/cm, temperature 27.3°C, moisture 7.72, total nitrogen 0.056%, phosphate 1.554 ppm, potassium 145.87 ppm, lead 7.02 ppm, cadmium 0.41 ppm, nickel 1.96 ppm, copper 1.14 ppm, total petroleum hydrocarbon 1487.24181 ppm, polycyclic aromatic hydrocarbon 12.85287 ppm. Isolates of hydrocarbon utilizing bacteria characterized belonged to the genera Escherichia coli, Klebsiella sp., Lactobacillus sp., Enterobacter sp., Serratia sp., and Proteus sp. The findings in this study have revealed the abilities of these groups of bacteria to be employed in bioremediation/biodegradation clean-up practices. Thus the polluted soil may harbour important genera of bacterial species that may have beneficial applications in environmental microbiology for future remediation processes.展开更多
Geo-microbial prospecting for hydrocarbons is an exploration method based on the seepage of light gaseous hydrocarbons from oil/gas reservoirs to the surface and their utilization by hydrocarbon oxidizing bacteria. Th...Geo-microbial prospecting for hydrocarbons is an exploration method based on the seepage of light gaseous hydrocarbons from oil/gas reservoirs to the surface and their utilization by hydrocarbon oxidizing bacteria. These bacteria utilize hydrocarbon gases as their sole source of food and are found to be enriched in the near surface soils/sediments above the oil and gas reservoirs. The detection of anomalous populations of n-pentane and n-hexane oxidizing bacteria in the surface soils can help to evaluate the prospects for hydrocarbon exploration. A geo-microbial survey has been carried out in the Bikaner Nagaur basin to investigate the prospects for hydrocarbon exploration. In the present study, bacterial counts for n-pentane utilizing bacteria range between 2.0× 10^2 and 1.26× 10^6 cfu/gm and n-hexane utilizing bacteria range between 2.0× 10^2 and 1.21 × 10^6 cfu/gm. The bacterial concentration distribution maps show four distinct anomalies in the study area. The possibility of discovering oil or gas reservoirs using the microbiological method is emphasized by the tact that the hydrocarbon-oxidizing bacteria range between 103 and 106 cfu/gm in soil/sediment receiving hydrocarbon micro-seepages. In the present study area of the Bikaner Nagaur basin, n-pentane and n-hexane utilizing bacteria are found between 105 and 106 cfu/gm of soil sample, which is significant and thereby substantiates the seepage of lighter hydrocarbon accumulations from oil and gas reservoirs. Geo-microbial prospecting studies suggest that hydrocarbon micro-seepage of subsurface origin is present in the study area and indicate that the area has positive prospects for petroleum exploration.展开更多
In order to understand the diversity and distribution of the bacterial community in the coastal sediment of the Bohai Bay, China, high-throughput barcoded pyrosequencing of the 16S rRNA gene was used. Metagenomic DNA ...In order to understand the diversity and distribution of the bacterial community in the coastal sediment of the Bohai Bay, China, high-throughput barcoded pyrosequencing of the 16S rRNA gene was used. Metagenomic DNA was extracted from the sediment samples, and was sequenced using a 454 GS FLX Titanium system. At 97% similarity, the sequences were assigned to 22 884 operational taxonomic units (OTUs) which belonged to 41 phyla, 84 classes, 268 genera and 789 species. At the different taxonomic levels, both the dominants and their distribution varied significantly among the six coastal sediments. Proteobacteria was the first dominant phylum across all the six coastal sediments, representing 57.52%, 60.66%, 45.10%, 60.92%, 56.63% and 56.59%, respectively. Bacteroidetes was the second dominant phylum at Stas S1, S2 and S4, while Chloroflexi was the second dominant phylum at Stas S3, S5 and S6. At class level, γ-Proteobacteria was the first dominant class at Stas S1,S2, S4 andS6, while δ-Proteobacteria became the first dominant class at Stas S3 and S5. In addition, a large proportion of unclassified representatives have distributed at the different taxonomic levels. Canonical correspondence analysis (CCA) results indicated that the sediment texture, water depth (D), dissolved oxygen (DO), total nitrogen (TN) and nine EPA priority control polycyclic aromatic hydrocarbons (PAHs) including naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, fluoranthene, pyrene, benzo[a]anthracene and indeno[1,2,3-cd]pyrene were the important factors in regulating the bacterial community composition. Those results are very important to further understand the roles of bacterial community in the coastal biogeochemical cycles.展开更多
In the Niger Delta region of Nigeria, oil explorations and exploitations abound, causing environmental pollution with serious consequences on soil ecosystem and its biodiversity. In spite of the relationship between m...In the Niger Delta region of Nigeria, oil explorations and exploitations abound, causing environmental pollution with serious consequences on soil ecosystem and its biodiversity. In spite of the relationship between microbes and fauna in soil ecosystem, such that both organisms can metabolize certain range of petroleum hydrocarbon substrates with the fauna influencing the remediation potentials of bacteria, yet soil fauna is still not fully considered in bioremediation. The influence of earthworm;Lumbricus terrestris on the remediating potentials of soil bacteria in petroleum hydrocarbon contaminated soils was investigated. Eighteen pots were filled with 700 g of soil each, with nine treated with mixture of 3 levels crude oil and remediated with earthworm, while the other nine had no earthworm. The total petroleum hydrocarbon (TPH), soil physical, nutrient compositions, and TPH degrading bacteria biodiversity were determined before contamination or commencement of study and thirty days after. The results showed a decrease in TPH concentration of 55.58%, 62.57% and 67.07% in 1 ml, 2 ml and 3 ml crude oil contaminated soil, respectively. Species richness and abundance of bacteria organisms increased with high relative abundance in soils remediated with earthworms, hydrocarbon utilizing bacteria increased from less than 0.1 cfu/g to 0.4 cfu/g, and total heterotrophic bacteria 1.6 cfu/g at the end of the study. Earthworms increased rate of remediation potentials of bacteria, such that within 30 days post remediation treatment, 34.14% of reduced concentration was achieved over soil samples without earthworms at 3 ml, and 25.14% at 2 ml concentration. Reduction in pH levels in remediated soils was between 6.39 to 6.17 and 6.74 to 6.72 in unremediated soils, while moisture content was 6.73% to 6.77% unremediated and 5.85% to 6.62% in earthworm remediated soils. Total organic carbon, nitrates in soils inoculated with earthworms were lower in concentration than those without earthworms. Reverse was the case with potassium, phosphate and phosphorous concentrations which were above those without earthworms. Results indicate statistically, significant difference between reduction in TPH in earthworm remediated soils and unremediated soils, pointing out that earthworm is a good candidate for facilitation of bacteria remediation-petroleum hydrocarbon contamination.展开更多
文摘Pollution of petroleum hydrocarbons, in particular oil spills, has attracted much attention in the past and recent decades. Oil spills influence natural microbial community, and physical and chemical properties of the affected sites. The biodegradation of hydrocarbons by microorganisms is one of the primary ways by which oil spill is eliminated from contaminated sites. One such spill was that of the Russian tanker the Nakhodka that spilled heavy oil into the Sea of Japan on January 2, 1997. The impact of the Nakhodka oil spill resulted in a viscous sticky fluid fouling the shores and affected natural ecosystems. This paper describes the weathering of hydrocarbon-degrading bacteria (genus Pseudomonas) and crystallized organic compounds from the Nakhodka oil spill-polluted seashores after nine years. The Nakhodka oil has hardened and formed crust of crystalline paraffin wax as shown by XRD analysis (0.422, 0.377, and 0.250 nm d-spacing) in association with graphite and calcite after 9 years of bioremediation. Anaerobic reverse side of the oil crust contained numerous coccus typed bacteria associated with halite. The finding of hydrocarbon-degrading bacteria and paraffin wax in the oil crust may have a significant effect on the weathering processes of the Nakhodka oil spill during the 9- year bioremediation.
文摘Lubricants are very often found in nature under waste-oil forms and represent for the environment a real danger of pollution due to the difficulty of their biodegradation. The situation is especially worrying in most developing countries in particular those of Sub-Saharan Africa due to the absence of regulation or control. The present work aims to isolate bacterial strains able to degrade hydrocarbons which can later be used in biotechnology for environments depollution. Oil-contaminated wastewater samples were collected in Ouagadougou city (Burkina Faso) and then used as source of bacterial isolation. Appropriate amounts of samples were inoculated to a mineral salt medium (MS) with Total Quartz 9000 oil as sole carbon and energy source and then incubated for enrichment, prior to microbe isolation. Two bacterial strains namely S2 and S7 were isolated from the enrichment cultures. The strains were tested for their ability to degrade other hydrocarbons (i.e. gasoline, diesel oil, brake oil) and for temperature, pH and salt concentration ranges for growth before their biochemical characteristics were defined. Based on their morphological, physiological and biochemical traits, strains S2 and S7 belong to Acinetobacter and Pseudomonas genera, respectively.
文摘<span style="line-height:1.5;">Polycyclic aromatic hydrocarbons (PAHs) are important pollutants, whose biodegradation and bioremediation with microorganisms are the promising ways to clean environments and reduce their exposure to humans. Although the transportation of PAHs across bacterial membrane is the first step forwards their biodegradation, it receives less attention. In this mini-review, we explore which transport system for uptake of carbon sources can serve for </span><span style="line-height:1.5;">uptake of PAHs in bacteria, and try to uncover some patterns in their transport mechanisms. Collectively, 1) the major carbohydrate transport system, PTS, is unlikely to take PAHs because PAHs lack a hydroxy group for phosphorylation but aromatic acids are good candidates;2) PAHs could probably go through H<sup>+</sup> symporters, especially the low-molecular-weight PAHs, which are partially dissolvable in water;3) it is unlikely that PAHs can produce chemiosmotic ion gradients to go through uniporters;and 4) antiporters could serve as transporters to transport PAHs across bacterial membrane only after the metabolism of PAHs generates extra H<sup>+</sup> inside cell. Accordingly, the basic mechanism for uptake of PAHs is whether they can donate H<sup>+</sup> in order to generate an electrochemical proton gradient to go through symporters.
文摘During the summer of Antarctic in 1993/1994, the species and amount of hydrocarbon bacteria of the Great Wall Bay and its adjacent sea area have been studied. Flavobacterium,Pseudomonas,Kurthia and Actinetobacter have been identified .The number of them varied from 3 cell/L to 1100 cell/L.The number in the inner bay is larger than that out of it.The dispersing is a very important way of the changing of hydrocarbon bacteria.
文摘Surface water sources in the oil producing Niger Delta region of Nigeria are highly susceptible to pollution by petroleum hydrocarbons and so it is important to understand the microbial diversity of such ecosystems. Water and sediment samples were collected between April-August, 2013 from Bodo creeks and taken to Environmental Microbiology laboratory of University of Portharcourt for analysis. A total of thirty aerobic heterotrophic bacterial strains isolated ranged from 3.0 - 7.0 × 104 cfu for surface water and 1.6 - 5.6 × 104 cfu for sediment samples of Bodo creek using serial dilution and spread plate technique. Pure cultures of bacteria were obtained on the basis of their morphological characteristics and subjected to biochemical tests and further classified on the basis of 16S rRNA gene sequence analysis. The DNA was isolated from size fractionated samples and the diversity of bacteria in each fraction was studied using PCR amplification of partial 16S rRNA. The sequences were submitted to NCBIGen bank for identification and assigning of accession numbers. The isolated aerobic heterotrophic bacteria belong to the families of Enterobacteriaceae, Bacilliceae, Alcaligenaceae, Pseudomonadaceae, Flavobactericeae and Planococcaceae.
文摘This study was designed and carried out to characterize hydrocarbonoclastic microbial communities in soil polluted with artisanal refined hydrocarbon at Trans Amadi, Phalga Local Government Area of Rivers State, Nigeria. Heterotrophic bacteria count ranged from 8.0 × 10<sup>5</sup> cfu/gm for sample TSAS1, and 2.1 × 10<sup>6</sup> cfu/gm for sample TSAS2 while TSAS3 was too numerous to count (TNTC). Hydrocarbon utilizing bacteria count ranged from 1.1 × 10<sup>5</sup> cfu/gm for TSAS1, and 5.9 × 10<sup>4</sup> cfu/gm for TSAS2, while TSAS3 was 5.4 × 10<sup>4</sup> cfu/gm. Physiochemical parameters of the soil were determined. The ranges obtained were pH 6.6, conductivity 125 μs/cm, temperature 27.3°C, moisture 7.72, total nitrogen 0.056%, phosphate 1.554 ppm, potassium 145.87 ppm, lead 7.02 ppm, cadmium 0.41 ppm, nickel 1.96 ppm, copper 1.14 ppm, total petroleum hydrocarbon 1487.24181 ppm, polycyclic aromatic hydrocarbon 12.85287 ppm. Isolates of hydrocarbon utilizing bacteria characterized belonged to the genera Escherichia coli, Klebsiella sp., Lactobacillus sp., Enterobacter sp., Serratia sp., and Proteus sp. The findings in this study have revealed the abilities of these groups of bacteria to be employed in bioremediation/biodegradation clean-up practices. Thus the polluted soil may harbour important genera of bacterial species that may have beneficial applications in environmental microbiology for future remediation processes.
文摘Geo-microbial prospecting for hydrocarbons is an exploration method based on the seepage of light gaseous hydrocarbons from oil/gas reservoirs to the surface and their utilization by hydrocarbon oxidizing bacteria. These bacteria utilize hydrocarbon gases as their sole source of food and are found to be enriched in the near surface soils/sediments above the oil and gas reservoirs. The detection of anomalous populations of n-pentane and n-hexane oxidizing bacteria in the surface soils can help to evaluate the prospects for hydrocarbon exploration. A geo-microbial survey has been carried out in the Bikaner Nagaur basin to investigate the prospects for hydrocarbon exploration. In the present study, bacterial counts for n-pentane utilizing bacteria range between 2.0× 10^2 and 1.26× 10^6 cfu/gm and n-hexane utilizing bacteria range between 2.0× 10^2 and 1.21 × 10^6 cfu/gm. The bacterial concentration distribution maps show four distinct anomalies in the study area. The possibility of discovering oil or gas reservoirs using the microbiological method is emphasized by the tact that the hydrocarbon-oxidizing bacteria range between 103 and 106 cfu/gm in soil/sediment receiving hydrocarbon micro-seepages. In the present study area of the Bikaner Nagaur basin, n-pentane and n-hexane utilizing bacteria are found between 105 and 106 cfu/gm of soil sample, which is significant and thereby substantiates the seepage of lighter hydrocarbon accumulations from oil and gas reservoirs. Geo-microbial prospecting studies suggest that hydrocarbon micro-seepage of subsurface origin is present in the study area and indicate that the area has positive prospects for petroleum exploration.
基金The Central Basic Scientific Research Project in the Public Welfare for the Scientific Research Institutes under contract No.gyk5091301
文摘In order to understand the diversity and distribution of the bacterial community in the coastal sediment of the Bohai Bay, China, high-throughput barcoded pyrosequencing of the 16S rRNA gene was used. Metagenomic DNA was extracted from the sediment samples, and was sequenced using a 454 GS FLX Titanium system. At 97% similarity, the sequences were assigned to 22 884 operational taxonomic units (OTUs) which belonged to 41 phyla, 84 classes, 268 genera and 789 species. At the different taxonomic levels, both the dominants and their distribution varied significantly among the six coastal sediments. Proteobacteria was the first dominant phylum across all the six coastal sediments, representing 57.52%, 60.66%, 45.10%, 60.92%, 56.63% and 56.59%, respectively. Bacteroidetes was the second dominant phylum at Stas S1, S2 and S4, while Chloroflexi was the second dominant phylum at Stas S3, S5 and S6. At class level, γ-Proteobacteria was the first dominant class at Stas S1,S2, S4 andS6, while δ-Proteobacteria became the first dominant class at Stas S3 and S5. In addition, a large proportion of unclassified representatives have distributed at the different taxonomic levels. Canonical correspondence analysis (CCA) results indicated that the sediment texture, water depth (D), dissolved oxygen (DO), total nitrogen (TN) and nine EPA priority control polycyclic aromatic hydrocarbons (PAHs) including naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, fluoranthene, pyrene, benzo[a]anthracene and indeno[1,2,3-cd]pyrene were the important factors in regulating the bacterial community composition. Those results are very important to further understand the roles of bacterial community in the coastal biogeochemical cycles.
文摘In the Niger Delta region of Nigeria, oil explorations and exploitations abound, causing environmental pollution with serious consequences on soil ecosystem and its biodiversity. In spite of the relationship between microbes and fauna in soil ecosystem, such that both organisms can metabolize certain range of petroleum hydrocarbon substrates with the fauna influencing the remediation potentials of bacteria, yet soil fauna is still not fully considered in bioremediation. The influence of earthworm;Lumbricus terrestris on the remediating potentials of soil bacteria in petroleum hydrocarbon contaminated soils was investigated. Eighteen pots were filled with 700 g of soil each, with nine treated with mixture of 3 levels crude oil and remediated with earthworm, while the other nine had no earthworm. The total petroleum hydrocarbon (TPH), soil physical, nutrient compositions, and TPH degrading bacteria biodiversity were determined before contamination or commencement of study and thirty days after. The results showed a decrease in TPH concentration of 55.58%, 62.57% and 67.07% in 1 ml, 2 ml and 3 ml crude oil contaminated soil, respectively. Species richness and abundance of bacteria organisms increased with high relative abundance in soils remediated with earthworms, hydrocarbon utilizing bacteria increased from less than 0.1 cfu/g to 0.4 cfu/g, and total heterotrophic bacteria 1.6 cfu/g at the end of the study. Earthworms increased rate of remediation potentials of bacteria, such that within 30 days post remediation treatment, 34.14% of reduced concentration was achieved over soil samples without earthworms at 3 ml, and 25.14% at 2 ml concentration. Reduction in pH levels in remediated soils was between 6.39 to 6.17 and 6.74 to 6.72 in unremediated soils, while moisture content was 6.73% to 6.77% unremediated and 5.85% to 6.62% in earthworm remediated soils. Total organic carbon, nitrates in soils inoculated with earthworms were lower in concentration than those without earthworms. Reverse was the case with potassium, phosphate and phosphorous concentrations which were above those without earthworms. Results indicate statistically, significant difference between reduction in TPH in earthworm remediated soils and unremediated soils, pointing out that earthworm is a good candidate for facilitation of bacteria remediation-petroleum hydrocarbon contamination.