期刊文献+
共找到2,637篇文章
< 1 2 132 >
每页显示 20 50 100
NUMERICAL SIMULATION OF TURBULENCE AND ITS STRUCTURE IN A HYDROCYCLONE
1
作者 Chu, Liangyin Chen, Wenmei +1 位作者 Li, Xiaozhong Wu, Chigong 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期130-136,132+134+136+138+,共9页
1INTRODUCTIONThestructureofturbulenceinhydrocycloneshasaninfluencenotonlyontheseparationperformancebutalsoo... 1INTRODUCTIONThestructureofturbulenceinhydrocycloneshasaninfluencenotonlyontheseparationperformancebutalsoontheenergyconsump... 展开更多
关键词 hydrocyclone numerical simulation of turbulence turbulence structure
下载PDF
CFD numerical simulation of flow velocity characteristics of hydrocyclone 被引量:9
2
作者 高淑玲 魏德洲 +3 位作者 刘文刚 马龙秋 卢涛 张瑞洋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2783-2789,共7页
A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The resul... A CFD based numerical simulation of flow velocity of hydrocyclone was conducted with different structural and operational parameters to investigate its distribution characteristics and influencing mechanism. The results show there exist several unsymmetrical envelopes of equal vertical velocities in both upward inner flows and downward outer flows in the hydrocyclone, and the cone angle and apex diameter have remarkable influence on the vertical location of the cone bottom of the envelope of zero vertical velocity. It is also found that the tangential velocity isolines exist in the horizontal planes located in the effective separation region of hydrocyclone. The increase of feed pressure has almost no effect on the distribution characteristics of both vertical velocity and tangential velocity in hydrocyclone, but the magnitude and gradient of tangential velocity are increased obviously to make the motion velocity of high density particles to the wall increased and to make the cyclonic separation effect improved. 展开更多
关键词 numerical simulation hydrocyclone flow velocity characteristics structural parameter operational parameter cyclonic separation effect
下载PDF
Numerical simulation of flow around square cylinder using different low-Reynolds number turbulence models 被引量:3
3
作者 张泠 周军莉 +2 位作者 陈晓春 兰丽 张楠 《Journal of Central South University of Technology》 EI 2008年第4期564-568,共5页
ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged u... ABE-KONDOH-NAGANO,ABID,YANG-SHIH and LAUNDER-SHARMA low-Reynolds number turbulence models were applied to simulating unsteady turbulence flow around a square cylinder in different phases flow field and time-averaged unsteady flow field.Meanwhile,drag and lift coefficients of the four different low-Reynolds number turbulence models were analyzed.The simulated results of YANG-SHIH model are close to the large eddy simulation results and experimental results,and they are significantly better than those of ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMR models.The modification of the generation of turbulence kinetic energy is the key factor to a successful simulation for YANG-SHIH model,while the correction of the turbulence near the wall has minor influence on the simulation results.For ABE-KONDOH-NAGANO,ABID and LAUNDER-SHARMA models satisfactory simulation results cannot be obtained due to lack of the modification of the generation of turbulence kinetic energy.With the joint force of wall function and the turbulence models with the adoption of corrected swirl stream,flow around a square cylinder can be fully simulated with less grids by the near-wall. 展开更多
关键词 low-Reynolds number turbulence model flow around square cylinder numerical simulation
下载PDF
Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence 被引量:1
4
作者 蔡伟华 李凤臣 张红娜 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期279-292,共14页
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we dire... Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects. 展开更多
关键词 decaying homogeneous isotropic turbulence turbulent drag-reducing flow velocity gradient tensor direct numerical simulation
下载PDF
Comparison of Reynolds average Navier-Stokes turbulence models in numerical simulations of the DC arc plasma torch 被引量:2
5
作者 Zihan PAN Lei YE +4 位作者 Shulou QIAN Qiang SUN Cheng WANG Taohong YE Weidong XIA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第2期60-72,共13页
Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and th... Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution. 展开更多
关键词 DC arc plasma torch numerical simulation turbulence model
下载PDF
Rotational dynamics of bottom-heavy rods in turbulence from experiments and numerical simulations 被引量:1
6
作者 Linfeng Jiang Cheng Wang +2 位作者 Shuang Liu Chao Sun Enrico Calzavarini 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第1期26-31,共6页
We successfully perform the three-dimensional tracking in a turbulent fluid flow of small axisymmetrical particles that are neutrally-buoyant and bottom-heavy,i.e.,they have a non-homogeneous mass distribu-tion along ... We successfully perform the three-dimensional tracking in a turbulent fluid flow of small axisymmetrical particles that are neutrally-buoyant and bottom-heavy,i.e.,they have a non-homogeneous mass distribu-tion along their symmetry axis.We experimentally show how a tiny mass inhomogeneity can affect the particle orientation along the preferred vertical direction and modify its tumbling rate.The experiment is complemented by a series of simulations based on realistic Navier-Stokes turbulence and on a point-like particle model that is capable to explore the full range of parameter space characterized by the gravi-tational torque stability number and by the particle aspect ratio.We propose a theoretical perturbative prediction valid in the high bottom-heaviness regime that agrees well with the observed preferential ori-entation and tumbling rate of the particles.We also show that the heavy-tail shape of the probability distribution function of the tumbling rate is weakly affected by the bottom-heaviness of the particles. 展开更多
关键词 Particle-laden flows Turbulent flows Direct numerical simulations Particle tracking
下载PDF
NUMERICAL SIMULATION OF THREE DIMENSIONAL INTERACTING TURBULENCE FLOW FIELD OVER PROJECTILE WITH LATERAL JETS
7
作者 Gao Xudong Wu Xiaosong College of Mechanical Engineering,Nanjing University of Science and Technology Nanjing 210094, P.R.China 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第z1期50-55,共6页
In order to study complicated interacting flow field over projectile with lateral jets. External interacting turbulence flow over projectile with lateral jets was numerically simulated firstly in supersonic speed and ... In order to study complicated interacting flow field over projectile with lateral jets. External interacting turbulence flow over projectile with lateral jets was numerically simulated firstly in supersonic speed and zero attack angle. The three dimensional Reynolds averaged Navier Stokes equations and implicit finite volume TVD scheme were applied. In order to avoid zonal method, ’O’ type grid of single zone including projectile base was produced by algebraic arithmetic. Body fitted grid was generated for the lateral nozzle exit successfully so that the nozzle exit can be simulated more accurately. The high Reynolds number two equation κ ε turbulence models were used. The main features of the complex flow are captured. The two kinds of flow field over projectile with and without lateral jets are compared from shock structure, pressure of body and base, etc . It shows that lateral jets not only can provide push force, but also change aerodynamics characteristic of projectile significantly. The results are very important for the study of projectile with lateral rocket boosters. 展开更多
关键词 LATERAL jet PROJECTILE NAVIER-STOKES equation finite volume TVD scheme numerical simulation turbulence
下载PDF
Direct numerical simulation of elastic turbulence and its mixing-enhancement effect in a straight channel flow
8
作者 张红娜 李凤臣 +2 位作者 曹阳 Kunugi Tomoaki 宇波 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期320-327,共8页
In this paper,we present a direct numerical simulation(DNS) of elastic turbulence of viscoelastic fluid at vanishingly low Reynolds number(Re = 1) in a three-dimensional straight channel flow for the first time,us... In this paper,we present a direct numerical simulation(DNS) of elastic turbulence of viscoelastic fluid at vanishingly low Reynolds number(Re = 1) in a three-dimensional straight channel flow for the first time,using the Giesekus constitutive model for the fluid.In order to generate and maintain the turbulent fluid motion in the straight channel,a sinusoidal force term is added to the momentum equation,and then the elastic turbulence is numerically realized with an initialized chaotic velocity field and a stretched conformation field.Statistical and structural characteristics of the elastic turbulence therein are analyzed based on the detailed information obtained from the DNS.The fluid mixing enhancement effect of elastic turbulence is also demonstrated for the potential applications of this phenomenon. 展开更多
关键词 elastic turbulence viscoelastic fluid direct numerical simulation mixing enhancement
下载PDF
Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations
9
作者 李继全 Y.KISHIMOTO +2 位作者 董家齐 N.MIYATO T.MATSUMOTO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第1期110-113,共4页
The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to ... The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence. 展开更多
关键词 large-scale structures ETG turbulence gyrofluid simulation TOKAMAK
下载PDF
Comparative Experimental and Numerical Study of Wave Loads on A Monopile Structure Using Different Turbulence Models
10
作者 ZENG Xin-meng SHI Wei +2 位作者 Constantine MICHAILIDES WANG Kai LI Xin 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期554-565,共12页
This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1:25 slope at different water depths as well as the effect of choosing different tu... This study numerically and experimentally investigates the effects of wave loads on a monopile-type offshore wind turbine placed on a 1:25 slope at different water depths as well as the effect of choosing different turbulence models on the efficiency of the numerical model.The numerical model adopts a two-phase flow by solving Unsteady Reynolds-Averaged Navier−Stokes(URANS)equations using the Volume Of Fluid(VOF)method and three differentk-ωturbulence models.Typical environmental conditions from the East China Sea are studied.The wave run-up and the wave loads applied on the monopile are investigated and compared with relevant experimental data as well as with mathematical predictions based on relevant theories.The numerical model is well validated against the experimental data at model scale.The use of different turbulence models results in different predictions on the wave height but less differences on the wave period.The baseline k-ωturbulence model and Shear-Stress Transport(SST)k-ωturbulence model exhibit better performance on the prediction of hydrodynamic load,at a model-scale water depth of 0.42 m,while the laminar model provides better results for large water depths.The SST turbulence model performs better in predicting wave run-up for water depth 0.42 m,while the laminar model and standard k-ωmodel perform better at water depth 0.52 m and 0.62 m,respectively. 展开更多
关键词 hydrodynamic loads turbulence models Morison equation wave run-up numerical wave tank monopile structure
下载PDF
Characteristics and generation of elastic turbulence in a three-dimensional parallel plate channel using direct numerical simulation
11
作者 张红娜 李凤臣 +3 位作者 李小斌 李东阳 蔡伟华 宇波 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期388-400,共13页
Direct numerical simulations(DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional(3D) parallel plate channel were carried out,by which numerical databases were established.Based on ... Direct numerical simulations(DNSs) of purely elastic turbulence in rectilinear shear flows in a three-dimensional(3D) parallel plate channel were carried out,by which numerical databases were established.Based on the numerical databases,the present paper analyzed the structural and statistical characteristics of the elastic turbulence including flow patterns,the wall effect on the turbulent kinetic energy spectrum,and the local relationship between the flow motion and the microstructures' behavior.Moreover,to address the underlying physical mechanism of elastic turbulence,its generation was presented in terms of the global energy budget.The results showed that the flow structures in elastic turbulence were 3D with spatial scales on the order of the geometrical characteristic length,and vortex tubes were more likely to be embedded in the regions where the polymers were strongly stretched.In addition,the patterns of microstructures' elongation behave like a filament.From the results of the turbulent kinetic energy budget,it was found that the continuous energy releasing from the polymers into the main flow was the main source of the generation and maintenance of the elastic turbulent status. 展开更多
关键词 elastic turbulence viscoelastic fluid direct numerical simulation rectilinear shear flow
下载PDF
Numerical Evaluation of Two k-εTurbulence Model for Predicting Flow and Solidification in Continuous Casting Slab 被引量:2
12
作者 LIU He-ping GAN Yong QIU Sheng-tao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2003年第2期10-16,共7页
A steady three-dimensional fluid flow and solidification model was built based on CFD software by high-Reynolds-number and Lam-Bremhorst low-Reynolds-number k-ε model.During the simulation,the fixed-grid enthalpy-por... A steady three-dimensional fluid flow and solidification model was built based on CFD software by high-Reynolds-number and Lam-Bremhorst low-Reynolds-number k-ε model.During the simulation,the fixed-grid enthalpy-porosity technique was used to represent the solidification,and Darcy law was adopted to simulate the flow in mushy region.The prediction for steel flow and solidification was evaluated by the comparison of two turbulence models.It is found that both Lam-Bremhorst low-Reynolds-number and high-Reynolds-number k-ε models predict the same trend of the steel flow and temperature distribution.However,due to the effect of turbulent flow on heat transfer,the low-Reynolds-number turbulence model predicts longer penetration depth of molten steel in sub-mold region,less shell growth and higher shell surface temperature at the narrow face compared with standard k-ε model. 展开更多
关键词 continuous slab caster SOLIDIFICATION steel flow turbulence model numerical simulation
下载PDF
Impact of depth ratio on flow structure and turbulence characteristics of compound open channel flows
13
作者 Shao-wei Ding Cheng Zeng +2 位作者 Jie Zhou Ling-ling Wang Chen Chen 《Water Science and Engineering》 EI CAS CSCD 2022年第3期265-272,共8页
Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows... Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios(hr=0.10,0.25,0.50,and 0.75).The main flow velocity,secondary flow,Reynolds stress,and bed shear stress were obtained from numerical simulations.The depth-averaged stream wise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain.The instantaneous coherent structures were presented by the Q criterion method.The impact of hr on flow structure and turbulence charac-teristics was analyzed.The results showed that with the increase of hr,the high velocity area in the main channel shifted to the floodplain,and the dip phenomenon became more obvious;the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain;and the vortex structures were found to significantly increase in the floodplain region. 展开更多
关键词 Large eddy simulation Compound open channel Depth ratio Flow structure turbulence characteristics
下载PDF
NUMERICAL SIMULATION AND ANALYSIS OF HORSESHOE-SHAPED VORTEX IN NEAR-WALL REGION OF TURBULENT BOUNDARY LAYER 被引量:5
14
作者 史万里 葛宁 +1 位作者 陈林 唐登斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期48-56,共9页
The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in... The low-Reynolds-number full developed turbulent flow in channels is simulated using large eddy simulation(LES)method with the preconditioned algorithm and the dynamic subgrid-scale model,with a given disturbance in inlet boundary,after a short development section.The inlet Reynolds number based on momentum thickness is 670.The computed results show good agreement with direct numerical simulation(DNS),which include root mean square fluctuated velocity distribution and average velocity distribution.It is also found that the staggered phenomenon of the coherent structures is caused by sub-harmonic.The results clearly show the formation and evolution of horseshoe vortex in the turbulent boundary layer,including horseshoe vortex structure with a pair of streamwise vortexes and one-side leg of horseshoe vortex.Based on the results,the development of the horseshoe-shaped coherent structures is analyzed in turbulent boundary layer. 展开更多
关键词 large eddy simulation(LES) horseshoe-shaped vortex turbulent boundary layer coherent structures preconditioned algorithm
下载PDF
Effect of RANS Turbulence Model on Aerodynamic Behavior of Trains in Crosswind 被引量:22
15
作者 Tian Li Deng Qin Jiye Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第5期145-156,共12页
The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may pr... The numerical simulation based on Reynolds time-averaged equation is one of the approved methods to evaluate the aerodynamic performance of trains in crosswind.However,there are several turbulence models,trains may present different aerodynamic performances in crosswind using different turbulence models.In order to select the most suitable turbulence model,the inter-city express 2(ICE2)model is chosen as a research object,6 different turbulence models are used to simulate the flow characteristics,surface pressure and aerodynamic forces of the train in crosswind,respectively.6 turbulence models are the standard k-ε,Renormalization Group(RNG)k-ε,Realizable k-ε,Shear Stress Transport(SST)k-ω,standard k-ωand Spalart-Allmaras(SPA),respectively.The numerical results and the wind tunnel experimental data are compared.The results show that the most accurate model for predicting the surface pressure of the train is SST k-ω,followed by Realizable k-ε.Compared with the experimental result,the error of the side force coefficient obtained by SST k-ωand Realizable k-εturbulence model is less than 1%.The most accurate prediction for the lift force coefficient is achieved by SST k-ω,followed by RNG k-ε.By comparing 6 different turbulence models,the SST k-ωmodel is most suitable for the numerical simulation of the aerodynamic behavior of trains in crosswind. 展开更多
关键词 turbulence model CROSSWIND High SPEED TRAIN numerical simulation Aerodynamic
下载PDF
Direct numerical simulation of compressible turbulent flows 被引量:18
16
作者 Xin-Liang Li De-Xun Fu +1 位作者 Yan-Wen Ma Xian Liang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期795-806,共12页
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-laye... This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence. 展开更多
关键词 Direct numerical simulation Compressible turbulence Coherent structures Turbulent boundary-layer flow
下载PDF
Numerical Simulation of Water Exchange Characteristics of the Jiaozhou Bay Based on A Three-Dimensional Lagrangian Model 被引量:15
17
作者 王翠 张学庆 孙英兰 《China Ocean Engineering》 SCIE EI 2009年第2期277-290,共14页
Based on theory of three-dimensional hydrodynamics, an Euler-Lagrangian particle model is established to study the transport and water exchange capability in the Jiaozhou Bay. The three-dimensional hydrodynamic model,... Based on theory of three-dimensional hydrodynamics, an Euler-Lagrangian particle model is established to study the transport and water exchange capability in the Jiaozhou Bay. The three-dimensional hydrodynamic model, driven by tide and wind, is used to study the effects of wetting and drying of estuarine intertidal flats by the dry-wet grid technology based on the Estuarine, Coastal and Ocean Model (ECOM). The particle model includes the advection and the diffusion processes, of which the advection process is simulated with a certain method, and the diffusion process is simulated with the random walk method. The effect of the intertidal zone, the turbulent diffusion and the timescales of the water exchange are also discussed. The results show that a moving boundary model can simulate the transport process of the particle in the intertidal zone, where the particles are transported for a longer distance than that of the stationary result. Simulations with and without the turbulent random walk show that the effect of turbulent diffusion is very effective at spreading particles throughout the estuary and speeding up the particle movement. The spatial distribution of residence time is given to quantify the water exchange capability that has very important ramifications to water quality. The effect of wind on the water exchange is also examined and the southeasterly wind in summer tends to block the water exchange near the northeast coast, while the northerly wind in winter speeds up the transport process. These results indicate that the Lagrangian particle model is applicable and has a large potential to help understanding the water exchange capability in estuaries, which can also be useful to simulate the transport process of contaminant. 展开更多
关键词 water exchange residence time numerical simulation turbulent diffusion Lagrangian particle tracking Jiaozhou Bay
下载PDF
Study on concentration and turbulence of solid-liquid FAE in dispersal process 被引量:7
18
作者 Jia-chen Chen Xin Ma Qiu-ju Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期657-660,共4页
This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this ... This paper describes numerical simulation on dispersion of the solid-liquid mixed fuel driven by explosion load. A model used in numerical calculation for dispersion of solid-liquid mixed fuel was established in this study. The concentration and turbulent intensity in the multiphase cloud of the solidliquid mixed fuel were obtained by numerical simulation. It was found that the fuel concentration tended to be 0.15 kg/m^3, the turbulence intensity tended to be 7 in 90 ms. The numerical results agree with those measured in the experiment. 展开更多
关键词 SOLID-LIQUID mixed FUEL CONCENTRATION turbulence INTENSITY numerical simulation
下载PDF
Experiment and numerical simulation of two-phase flow in oxygen enriched side-blown furnace 被引量:18
19
作者 Yan-ting LIU Tian-zu YANG +3 位作者 Zhuo CHEN Zhen-yu ZHU Ling ZHANG Qing HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期249-258,共10页
Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.th... Taking an oxygen enriched side-blown furnace as the prototype,a hydraulic model was established according to the similarity principle.The influence of three factors on the gas-liquid two-phase flow was analyzed,i.e.the airflow speed,the submerged depth and the downward angle of the nozzle.A numerical simulation of the hydraulic model was carried out trying to find the suitable turbulence model which can describe the side-blown two-phase flow correctly by comparing the simulation results with the experimental data.The experiment shows that the airflow speed has a great influence on the flow of the water.The submerged depth of the nozzle has a relatively smaller influence on the penetration depth and the surface fluctuation height in the liquid phase.When the nozzle is at a downward angle of 15°,the penetration depth and the surface fluctuation height are reduced.It is concluded that the numerical results with the realizable k-εturbulence model are the closest to the experiment for the penetration depth,the surface fluctuation height and the bubble scale. 展开更多
关键词 side-blown furnace hydraulic model numerical simulation turbulence model
下载PDF
Numerical simulation of the flow within and over an intersection model with Reynolds-averaged Navier-Stokes method 被引量:8
20
作者 李磊 胡非 +2 位作者 程雪玲 姜金华 马晓光 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期149-155,共7页
In this study, the Reynolds-averaged Navier-Stokes (RANS) method is employed to simulate the flow within and over an intersection model with three kinds of k-ε turbulence closure schemes, namely, standard model, re... In this study, the Reynolds-averaged Navier-Stokes (RANS) method is employed to simulate the flow within and over an intersection model with three kinds of k-ε turbulence closure schemes, namely, standard model, renormalization group (RNG) model and realizable k-ε model. The comparison between the simulated and observed flow fields shows that the RANS simulation with all the three turbulence models cannot completely and accurately reproduce the observed flow field in all details. A detailed comparison between the predicted profiles of wind velocities and the measured data shows that the realizble k-ε model is the best one among the three turbulence closure models in general. However, the extent to which the improvement is achieved by the realizable k-ε model is still not enough to completely and accurately describe the turbulent flow in a relatively complex environment. 展开更多
关键词 RANS numerical simulation INTERSECTION turbulence closure model
下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部