期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Soft sensor design for hydrodesulfurization process using support vector regression based on WT and PCA 被引量:2
1
作者 Saeid Shokri Mohammad Taghi Sadeghi +1 位作者 Mahdi Ahmadi Marvast Shankar Narasimhan 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期511-521,共11页
A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support ... A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR. 展开更多
关键词 soft sensor support vector regression principal component analysis wavelet transform hydrodesulfurization process
下载PDF
Improvement of the prediction performance of a soft sensor model based on support vector regression for production of ultra-low sulfur diesel 被引量:2
2
作者 Saeid Shokri Mohammad Taghi Sadeghi +1 位作者 Mahdi Ahmadi Marvast Shankar Narasimhan 《Petroleum Science》 SCIE CAS CSCD 2015年第1期177-188,共12页
A novel data-driven, soft sensor based on support vector regression (SVR) integrated with a data compression technique was developed to predict the product quality for the hydrodesulfurization (HDS) process. A wid... A novel data-driven, soft sensor based on support vector regression (SVR) integrated with a data compression technique was developed to predict the product quality for the hydrodesulfurization (HDS) process. A wide range of experimental data was taken from a HDS setup to train and test the SVR model. Hyper-parameter tuning is one of the main challenges to improve predictive accuracy of the SVR model. Therefore, a hybrid approach using a combination of genetic algorithm (GA) and sequential quadratic programming (SQP) methods (GA-SQP) was developed. Performance of different optimization algorithms including GA-SQP, GA, pattern search (PS), and grid search (GS) indicated that the best average absolute relative error (AARE), squared correlation coefficient (R2), and computation time (CT) (AARE = 0.0745, R2 = 0.997 and CT = 56 s) was accomplished by the hybrid algorithm. Moreover, to reduce the CT and improve the accuracy of the SVR model, the vector quantization (VQ) technique was used. The results also showed that the VQ technique can decrease the training time and improve prediction performance of the SVR model. The proposed method can provide a robust, soft sensor in a wide range of sulfur contents with good accuracy. 展开更多
关键词 Soft sensor Support vector regression Hybrid optimization method Vector quantization Petroleum refinery hydrodesulfurization process Gas oil
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部