A novel method was applied to the surface modification of the metal hydride (MH) electrode of the Ni/MH battery. The electrode was plated with a thin silver film by using plasma technology and its effect on the perfor...A novel method was applied to the surface modification of the metal hydride (MH) electrode of the Ni/MH battery. The electrode was plated with a thin silver film by using plasma technology and its effect on the performance of the Ni/MH battery was examined. Charge-discharge test proved that the battery with modified electrode exhibits a better high-rate dischargeability and chargeability than the battery with untreated electrode. The battery with modified electrode exhibits satisfactory durability. After 500 cycles, the capacities of the batteries with modified and unmodified electrode are 90.1% and 82.3% of their original capacities. The inner pressure test shows that the battery with modified electrode displays a much lower inner gas pressure on charging. The experimental results demonstrate that this method is an effective way for the surface modification of the electrode of the Ni/MH battery.展开更多
A novel method was applied to the surface modification of the metal hydride(MH)electrode of MH/Ni batteries.Both sides of the electrode were plated with a thin silver film about 0.1μm thick using vacuum evaporation p...A novel method was applied to the surface modification of the metal hydride(MH)electrode of MH/Ni batteries.Both sides of the electrode were plated with a thin silver film about 0.1μm thick using vacuum evaporation plating technology,and the effect of the electrode on the performance of MH/Ni batteries was examined.It is found that the surface modification can enhance the electrode conductivity and decrease the battery ohimic resistance.After surface modification,the discharge capacity at 5C(7.5A)is increased by 212 mA.h and the discharge voltage is increased by 0.11 V,the resistance of the batteries is also decreased by 32%.The batteries with modified electrode exhibit satisfactory durability.The remaining capacity of the modified batteries is 89%of the initial capacity even after 500 cycles.The inner pressure of the batteries during overcharging is lowered and the charging efficiency of the batteries is improved.展开更多
A novel plating process was applied to the surface modification of the metal hydride (MH) electrode of the MH/Ni batteries. The electrode was plated with a thin nickel film about 0.1 μm thick by using multi-arc ion...A novel plating process was applied to the surface modification of the metal hydride (MH) electrode of the MH/Ni batteries. The electrode was plated with a thin nickel film about 0.1 μm thick by using multi-arc ion plating technique. The X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to analyze the electrodes. Influence of the surface modification on the performance of the MH/Ni batteries was studied. It is shown that the surface modification could enhance the electrode eondue tivity and decrease the batteries ohimie resistance by 28.2 %. After surface modification, the discharge capacity of the batteries at 5C (8.5 A) is increased by 212 mA· h and discharge voltage is increased by 0.09 V. The surface modification also improves the cyclic durability of the batteries. The inner pressure of the batteries with modified electrode during overcharging is much lower than that with unmodified electrode. The experimental results demonstrate that this process is an effective way for the surface modification of the electrode of MH/Ni batteries.展开更多
文摘A novel method was applied to the surface modification of the metal hydride (MH) electrode of the Ni/MH battery. The electrode was plated with a thin silver film by using plasma technology and its effect on the performance of the Ni/MH battery was examined. Charge-discharge test proved that the battery with modified electrode exhibits a better high-rate dischargeability and chargeability than the battery with untreated electrode. The battery with modified electrode exhibits satisfactory durability. After 500 cycles, the capacities of the batteries with modified and unmodified electrode are 90.1% and 82.3% of their original capacities. The inner pressure test shows that the battery with modified electrode displays a much lower inner gas pressure on charging. The experimental results demonstrate that this method is an effective way for the surface modification of the electrode of the Ni/MH battery.
基金Project(2002CB211800)supported by the National Basic Research Program of ChinaProject(05120404)supported by the FundamentalResearch of Beijing Institute of Technology
文摘A novel method was applied to the surface modification of the metal hydride(MH)electrode of MH/Ni batteries.Both sides of the electrode were plated with a thin silver film about 0.1μm thick using vacuum evaporation plating technology,and the effect of the electrode on the performance of MH/Ni batteries was examined.It is found that the surface modification can enhance the electrode conductivity and decrease the battery ohimic resistance.After surface modification,the discharge capacity at 5C(7.5A)is increased by 212 mA.h and the discharge voltage is increased by 0.11 V,the resistance of the batteries is also decreased by 32%.The batteries with modified electrode exhibit satisfactory durability.The remaining capacity of the modified batteries is 89%of the initial capacity even after 500 cycles.The inner pressure of the batteries during overcharging is lowered and the charging efficiency of the batteries is improved.
文摘A novel plating process was applied to the surface modification of the metal hydride (MH) electrode of the MH/Ni batteries. The electrode was plated with a thin nickel film about 0.1 μm thick by using multi-arc ion plating technique. The X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to analyze the electrodes. Influence of the surface modification on the performance of the MH/Ni batteries was studied. It is shown that the surface modification could enhance the electrode eondue tivity and decrease the batteries ohimie resistance by 28.2 %. After surface modification, the discharge capacity of the batteries at 5C (8.5 A) is increased by 212 mA· h and discharge voltage is increased by 0.09 V. The surface modification also improves the cyclic durability of the batteries. The inner pressure of the batteries with modified electrode during overcharging is much lower than that with unmodified electrode. The experimental results demonstrate that this process is an effective way for the surface modification of the electrode of MH/Ni batteries.
文摘采用12 mol/L NaOH+0.5 mol/L NH4F+0.1 mol/L KBH4混合溶液对储氢合金MlNi4.07Co0.45Mn0.38Al0.31进行表面处理,并以纳米碳粉作为导电剂,提高储氢合金电极的高倍率充放电性能。XRD、SEM与X射线能谱(EDS)分析表明:处理后的储氢合金表面生成了纳米棒状微粒;合金表面的Al、Mn和Fe部分溶解,形成富Ni层;处理前后的储氢合金均为CaCu5型晶体结构。以10%超细镍粉、5%乙炔黑和5%DJ-01导电炭黑为导电剂时,处理后合金电极常温10.0 C放电至0.8 V时的比容量分别为50.6 m Ah/g、102.2 m Ah/g和120.6 m Ah/g。