Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment,which remains an unmet clinical challenge.Herein,an injectable Tetra-PEG hydrogel tha...Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment,which remains an unmet clinical challenge.Herein,an injectable Tetra-PEG hydrogel that possesses rapid gelation,firm tissue adhesion,high mechanical strength,suitable degradability,and excellent biocompatibility is developed as a sutureless and coagulation-independent bioadhesive for the management of extraction sockets.Our results demonstrate that the rapid and robust adhesive sealing of the extraction socket by the Tetra-PEG hydrogel can provide reliable protection for the underlying wound and stabilize blood clots to facilitate tissue healing.In vivo experiments using an anticoagulated rat tooth extraction model show that the hydrogel significantly outperformed clinically used cotton and gelatin sponge in hemostatic efficacy,wound closure,alveolar ridge preservation,and in situ alveolar bone regeneration.Histomorphological evaluations reveal the mechanisms for accelerated bone repair through suppressed long-term inflammation,elevated collagen deposition,higher osteoblast activity,and enhanced angiogenesis.Together,our study highlights the clinical potential of the developed injectable Tetra-PEG hydrogel for treating anticoagulant-related post-extraction hemorrhage and improving socket healing.展开更多
Keratoplasty is the gold standard treatment for visual impairment caused by corneal damage.The use of suturing as the bonding method is the source of many complications following keratoplasty.Currently available corne...Keratoplasty is the gold standard treatment for visual impairment caused by corneal damage.The use of suturing as the bonding method is the source of many complications following keratoplasty.Currently available corneal adhesives do not have both adequate adhesive strength and acceptable biocompatibility.Herein,we developed a photocurable bioadhesive hydrogel which was composed of gelatin methacryloyl and oxidized dextran for sutureless keratoplasty.The bioadhesive hydrogel exhibited high light transmittance,resistance to enzymatic degradation and excellent biocompatibility.It also had higher adhesive strength than commercial adhesives(fibrin glue).In a rabbit model of lamellar keratoplasty,donor corneal grafts could be closely bonded to the recipient corneal bed and remained attached for 56 days by using of this in situ photopolymerized bioadhesive hydrogel.The operated cornea maintained transparent and noninflamed.Sutureless keratoplasty using bioadhesive hydrogel allowed rapid graft re-epithelialization,typically within 7 days.In vivo confocal microscopic and histological evaluation of the operated cornea did not show any apparent abnormalities in terms of corneal cells and ultrastructure.Thus,this bioadhesive hydrogel is exhibited to be an appealing alternative to sutures for keratoplasty and other corneal surgeries.展开更多
基金support for the work from the Ministry of Science and Technology of China (2020YFA0908900)National Natural Science Foundation of China (21935011 and 21725403)+2 种基金Shenzhen Science and Technology Innovation Commission (KQTD20200820113012029,JCYJ20190814114605162,and JCYJ20220818100601003)Guangdong Basic and Applied Basic Research Foundation (2022A1515110321)Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003).
文摘Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment,which remains an unmet clinical challenge.Herein,an injectable Tetra-PEG hydrogel that possesses rapid gelation,firm tissue adhesion,high mechanical strength,suitable degradability,and excellent biocompatibility is developed as a sutureless and coagulation-independent bioadhesive for the management of extraction sockets.Our results demonstrate that the rapid and robust adhesive sealing of the extraction socket by the Tetra-PEG hydrogel can provide reliable protection for the underlying wound and stabilize blood clots to facilitate tissue healing.In vivo experiments using an anticoagulated rat tooth extraction model show that the hydrogel significantly outperformed clinically used cotton and gelatin sponge in hemostatic efficacy,wound closure,alveolar ridge preservation,and in situ alveolar bone regeneration.Histomorphological evaluations reveal the mechanisms for accelerated bone repair through suppressed long-term inflammation,elevated collagen deposition,higher osteoblast activity,and enhanced angiogenesis.Together,our study highlights the clinical potential of the developed injectable Tetra-PEG hydrogel for treating anticoagulant-related post-extraction hemorrhage and improving socket healing.
基金supported by National Natural Science Foundation of China(81870633)Guangdong Province Key Field R&D Program(2020B1111150002).
文摘Keratoplasty is the gold standard treatment for visual impairment caused by corneal damage.The use of suturing as the bonding method is the source of many complications following keratoplasty.Currently available corneal adhesives do not have both adequate adhesive strength and acceptable biocompatibility.Herein,we developed a photocurable bioadhesive hydrogel which was composed of gelatin methacryloyl and oxidized dextran for sutureless keratoplasty.The bioadhesive hydrogel exhibited high light transmittance,resistance to enzymatic degradation and excellent biocompatibility.It also had higher adhesive strength than commercial adhesives(fibrin glue).In a rabbit model of lamellar keratoplasty,donor corneal grafts could be closely bonded to the recipient corneal bed and remained attached for 56 days by using of this in situ photopolymerized bioadhesive hydrogel.The operated cornea maintained transparent and noninflamed.Sutureless keratoplasty using bioadhesive hydrogel allowed rapid graft re-epithelialization,typically within 7 days.In vivo confocal microscopic and histological evaluation of the operated cornea did not show any apparent abnormalities in terms of corneal cells and ultrastructure.Thus,this bioadhesive hydrogel is exhibited to be an appealing alternative to sutures for keratoplasty and other corneal surgeries.