期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An injectable and coagulation-independent Tetra-PEG hydrogel bioadhesive for post-extraction hemostasis and alveolar bone regeneration 被引量:1
1
作者 Gang He Yiwen Xian +6 位作者 Huajun Lin Chengcheng Yu Luyuan Chen Zhihui Chen Yonglong Hong Chong Zhang Decheng Wu 《Bioactive Materials》 SCIE CSCD 2024年第7期106-118,共13页
Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment,which remains an unmet clinical challenge.Herein,an injectable Tetra-PEG hydrogel tha... Effective control of post-extraction hemorrhage and alveolar bone resorption is critical for successful extraction socket treatment,which remains an unmet clinical challenge.Herein,an injectable Tetra-PEG hydrogel that possesses rapid gelation,firm tissue adhesion,high mechanical strength,suitable degradability,and excellent biocompatibility is developed as a sutureless and coagulation-independent bioadhesive for the management of extraction sockets.Our results demonstrate that the rapid and robust adhesive sealing of the extraction socket by the Tetra-PEG hydrogel can provide reliable protection for the underlying wound and stabilize blood clots to facilitate tissue healing.In vivo experiments using an anticoagulated rat tooth extraction model show that the hydrogel significantly outperformed clinically used cotton and gelatin sponge in hemostatic efficacy,wound closure,alveolar ridge preservation,and in situ alveolar bone regeneration.Histomorphological evaluations reveal the mechanisms for accelerated bone repair through suppressed long-term inflammation,elevated collagen deposition,higher osteoblast activity,and enhanced angiogenesis.Together,our study highlights the clinical potential of the developed injectable Tetra-PEG hydrogel for treating anticoagulant-related post-extraction hemorrhage and improving socket healing. 展开更多
关键词 hydrogel bioadhesives Hemostatic hydrogels Alveolar ridge preservation Alveolar bone regeneration Blood clots
原文传递
Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty 被引量:8
2
作者 Xuan Zhao Saiqun Li +4 位作者 Xinyue Du Weihua Li Qian Wang Dalian He Jin Yuan 《Bioactive Materials》 SCIE 2022年第2期196-209,共14页
Keratoplasty is the gold standard treatment for visual impairment caused by corneal damage.The use of suturing as the bonding method is the source of many complications following keratoplasty.Currently available corne... Keratoplasty is the gold standard treatment for visual impairment caused by corneal damage.The use of suturing as the bonding method is the source of many complications following keratoplasty.Currently available corneal adhesives do not have both adequate adhesive strength and acceptable biocompatibility.Herein,we developed a photocurable bioadhesive hydrogel which was composed of gelatin methacryloyl and oxidized dextran for sutureless keratoplasty.The bioadhesive hydrogel exhibited high light transmittance,resistance to enzymatic degradation and excellent biocompatibility.It also had higher adhesive strength than commercial adhesives(fibrin glue).In a rabbit model of lamellar keratoplasty,donor corneal grafts could be closely bonded to the recipient corneal bed and remained attached for 56 days by using of this in situ photopolymerized bioadhesive hydrogel.The operated cornea maintained transparent and noninflamed.Sutureless keratoplasty using bioadhesive hydrogel allowed rapid graft re-epithelialization,typically within 7 days.In vivo confocal microscopic and histological evaluation of the operated cornea did not show any apparent abnormalities in terms of corneal cells and ultrastructure.Thus,this bioadhesive hydrogel is exhibited to be an appealing alternative to sutures for keratoplasty and other corneal surgeries. 展开更多
关键词 Bioadhesive hydrogels Photocurable Cornea repair Sutureless keratoplasty
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部