The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulat...The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.展开更多
The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentia...The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order CI〈Br〈I, and hydrogen bonding is stronger than the corresponding halogen bond- ing. So, hydrogen bonding complexes should be dominant in trihalomethanes. However, it is possible that halogen bonding complex is competitive, even preponderant, in triiodomethane due to the similar interaction energy. This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.展开更多
In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent wi...In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.展开更多
Hyperbranched poly(amine-ester)s bearing self-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties, which make them suitable as novel hot-...Hyperbranched poly(amine-ester)s bearing self-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties, which make them suitable as novel hot-melting materials.展开更多
A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1...A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.展开更多
The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar...The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific展开更多
Density functional theory B3LYP method with 6-31++G** basis was used to optimize the geometries of the ground states for 1,2,3-triazine-(H2O)n(n=1,2,3) complexes. All calculations indicate that the 1,2,3- tria...Density functional theory B3LYP method with 6-31++G** basis was used to optimize the geometries of the ground states for 1,2,3-triazine-(H2O)n(n=1,2,3) complexes. All calculations indicate that the 1,2,3- triazine-water complexes in the ground states have strong hydrogen-bonding interaction, and the complex having a N… .H-O hydrogen bond and a chain of water molecules which is terminated by a O. … .H-C hydrogen bond is the most stable. The H-O stretching modes of complexes are red-shifted relative to that of the monomer. In addition, the Natural bond orbit (NBO) analysis indicates that the intermolecular charge transfer between 1,2,3-triazine and water is 0.0222e, 0.0261e and 0.0273e for the most stable 1:1, 1:2 and 1:3 complexes, respectively. The first singlet (n, π*) vertical excitation energy of the monomer 1,2,3-triazine and the hydrogen-bonding complexes of 1,2,3-triazine-(H2O)n were investigated by time-dependent density functional theory.展开更多
A stable Sc phase is formed through hydrogen bonding between side-chain aromatic acid groups of polysiloxane: Bending of polysiloxane with N-Acetyl Latimic acid (NAA) gives a chiral S c * phase; The influence of polym...A stable Sc phase is formed through hydrogen bonding between side-chain aromatic acid groups of polysiloxane: Bending of polysiloxane with N-Acetyl Latimic acid (NAA) gives a chiral S c * phase; The influence of polymerism and hydrogen bond induction effect over mesophase is discussed. The influence of NAA over mesophase is studied.展开更多
This paper reports that vibrational spectroscopic analysis on hYdrogen-bonding between acetone and water comprises both experimental Raman spectra and ab initio calculations on structures of various acetone/water comp...This paper reports that vibrational spectroscopic analysis on hYdrogen-bonding between acetone and water comprises both experimental Raman spectra and ab initio calculations on structures of various acetone/water complexes with changing water concentrations. The optimised geometries and wavenumbers of the neat acetone molecule and its complexes are calculated by using ab initio method at the MP2 level with 6-311+G(d,p) basis set. Changes in wavenumber position and linewidth (fullwidth at half maximum) have been explained for neat as well as binary mixtures with different mole fractions of the reference system, acetone, in terms of intermolecular hydrogen bonding. The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the concentration dependent changes in the spectral features in terms of hydrogen bonding.展开更多
The practical application of silica-based composites as an alternative to commercial graphite anode materials is hampered by their large volumetric expansion,poor conductivity,and low Coulombic efficiency.In this work...The practical application of silica-based composites as an alternative to commercial graphite anode materials is hampered by their large volumetric expansion,poor conductivity,and low Coulombic efficiency.In this work,a novel silica/oxidized mesocarbon microbead/amorphous carbon(SiO2/O’MCMB/C)hierarchical structure in which SiO2 is sandwiched between spherical graphite and amorphous carbon shell was succes sfully fabricated through hydrogen bonding-assisted self-assembly and post-carbon coating method.The obtained three-layer hierarchical structure effectively accommodates the volumetric expansion of SiO2 and significantly enhances the electronic conductivity of composite materials.Moreover,the outer layer of amorphous carbon effectively increases the diffusion rate of lithium ions and promotes the formation of stable SEI film.As a result,the SiO2/O’MCMB/C composite exhibits superior electrochemical performance with a reversible capacity of 459.5 mA h/g in the first cycle,and the corresponding Coulombic efficiency is 62.8%.After 300 cycles,the capacity climbs to around 600 mA h/g.This synthetic route provides an efficient method for preparing SiO2 supported on graphite with excellent electrochemical performance,which is likely to promote its commercial applications.展开更多
In this paper, we report on a series of computational simulations on hydrogen bonding in two ice phases (Ih and Ic) using CASTEP with PW91 and RPBE exchange-correlation based on ab initio density functional theory. ...In this paper, we report on a series of computational simulations on hydrogen bonding in two ice phases (Ih and Ic) using CASTEP with PW91 and RPBE exchange-correlation based on ab initio density functional theory. The strength of the H-bond is correlated with intramolecular O-H stretching, and the energy splitting exists for both the H-bond and covalent O-H stretching. By analyzing the dispersion relationship of to(q), we observe the separation of the longitudinal optic (LO) mode from transverse optic (TO) mode at the gamma point, seemingly interpreting the controversial two H-bond peaks in the vibrational spectrum of ice recorded by inelastic incoherent neutron scattering experiments. The test of ambient environment on phonon density of sates (PDOS) shows that the relaxed tetrahedral structure is the most stable structural configuration for water clusters.展开更多
The title block copolymer (defined as PSUEA) containing pendant,self-complementary quadruple hydrogen bonding sites has been prepared successfully by three steps.First,poly(styrene-b-2-hydroxyethyl acrylate) (defined ...The title block copolymer (defined as PSUEA) containing pendant,self-complementary quadruple hydrogen bonding sites has been prepared successfully by three steps.First,poly(styrene-b-2-hydroxyethyl acrylate) (defined as PSHEA) was prepared by living radical polymerizing 2-hydroxyethyl acrylate (HEA) initiated by polystyrene (PSt) macro- initiator,which was prepared via nitroxide-mediated polymerization (NMP) technique.After treated by excessive 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (IPDI),...展开更多
The title compound [In(H2ip)(pdc)(H2O)] (H3ip = 5-hydroxyisophthalic acid, H2Pdc = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by single-crystal X-ray diffraction analysis. It crysta...The title compound [In(H2ip)(pdc)(H2O)] (H3ip = 5-hydroxyisophthalic acid, H2Pdc = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21/c with a = 13.830(8), b = 6.488(4), c = 17.632(10)A^°, β = 92.510(10)°, C15H10InNO10, Mr= 479.06, V = 1580.6(15)A^°3, Z = 4, De= 2.013 g/cm^3, F(000) = 944,μ = 1.557 mm^-1, the final R = 0.0413 and wR = 0.0793 for 2950 observed reflections with I 〉 2σ(I). The In(Ⅲ) ion is seven-coordinated in a slightly distorted penta-bipyramidal geometry. The mixed ligands connect the In(Ⅲ) ions into 21 helical chains along the [010] direction, and the hydrogen bonds assemble the chains into a three-dimensional supramolecular network.展开更多
After a concise introduction of hydrogen bonding effects in solute-solute and solutesolvent bonding, the design of polymeric adsorbents based on hydrogen bonding, selectivity in adsorption through hydrogen bonding. an...After a concise introduction of hydrogen bonding effects in solute-solute and solutesolvent bonding, the design of polymeric adsorbents based on hydrogen bonding, selectivity in adsorption through hydrogen bonding. and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.展开更多
The title complex [Cu(L1)(L2)(H2O)]·H2O(1,HL1 = N-(imino(pyridin-2-yl)me-thyl)picolinamidine),HL2 = salicylic acid) has been obtained by volatilization method with L1 prepared from 2,4,6-tripyridyl-1...The title complex [Cu(L1)(L2)(H2O)]·H2O(1,HL1 = N-(imino(pyridin-2-yl)me-thyl)picolinamidine),HL2 = salicylic acid) has been obtained by volatilization method with L1 prepared from 2,4,6-tripyridyl-1,3,5-triazine in situ.1 was fully characterized by single-crystal X-ray diffraction,elemental analysis and FT-IR.This complex exhibits a three-dimensional frame-work constructed through hydrogen bonding and C-H···π stacking interactions.The cyclic voltametric behavior of complex 1 was also investigated.1 belongs to the monoclinic system,space group P21/c with a = 15.112(5),b = 7.115(2),c = 19.899(6) ,β = 112.32°,V = 1979.4(11) 3,Mr = 460.94,Dc = 1.540 g/cm3,F(000) = 948,μ = 1.146 mm-1,Z = 4,the final R = 0.0612 and wR = 0.1813 for 2510 observed reflections with I 2σ(I).展开更多
By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water...By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water–anion hydrogen bonds, and PNIPAM–anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: Na Cl>Na Br>Na I. PNIPAM–water hydrogen bonds are affected by water–anion hydrogen bonds and PNIPAM–anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.展开更多
The interactions and structures of the urea-water system are studied by an all-atom molecular dynamics (MD) simulation. The hydrogen-bonding network and the radial distribution functions are adopted in MD simulation...The interactions and structures of the urea-water system are studied by an all-atom molecular dynamics (MD) simulation. The hydrogen-bonding network and the radial distribution functions are adopted in MD simulations. The structures of urea-water mixtures can be classified into different regions from the analysis of the hydrogen-bonding network. The urea molecule shows the certain tendency to the self-aggregate with the mole fraction of urea increasing. Moreover, the results of the MD simulations are also compare with the chemical shifts and viscosities of the urea aqueous solutions, and the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data such as chemical shifts of the hydrogen atom and viscosity.展开更多
A novel model for the 1: 2 complex of piperazine with some phenols in solution is established and verified. In CDCl3 solution, one piperazine molecule is tied to two phenol molecules by hydrogen bonds of O-H---N and N...A novel model for the 1: 2 complex of piperazine with some phenols in solution is established and verified. In CDCl3 solution, one piperazine molecule is tied to two phenol molecules by hydrogen bonds of O-H---N and N-H---O. And the protons of >NH and -OH groups exchange quickly and simultaneously between the atoms of phenol oxygen and piperazine nitrogen.展开更多
Semi-empirical AMI method was used to study 1:1 and 1:2 hydrogen bond complexes formed with perylene dianhydride and pyridine derivatives. The weak interaction energy become bigger as the number of hydrogen bonds in...Semi-empirical AMI method was used to study 1:1 and 1:2 hydrogen bond complexes formed with perylene dianhydride and pyridine derivatives. The weak interaction energy become bigger as the number of hydrogen bonds increases. The donor groups on the host and electron-withdrawing groups on the guest molecules favor hydrogen bonding interactions, and the formation of hydrogen bonding leads to electron density flow from the host to the guest molecules. Electronic spectra of these complexes were computed using INDO/SCI method. Blue-shift of the clectronic absorption spectra for the complexes, comparing that of the host, takes place, and the first peaks for different complexes changed slightly. These are in agreement with the experimcntal results. The cause of blue-shift was discussed, and the electronic transitions were assigned based on theoretical calculations. The potential curve of double proton transfer in the complex was calculated, and the transition state and activated energy relative to the N H bond were obtained.展开更多
B3LYP/6 31+g( d ) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H 2O as well as NH 3. It was found that some properties of the non covalent complexes, inclu...B3LYP/6 31+g( d ) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H 2O as well as NH 3. It was found that some properties of the non covalent complexes, including the interaction energies, donor acceptor (host guest) distances, bond lengths, and vibration frequencies, could show well defined substituent effects. Thus, from the substituent studies we can not only understand the mechanism of a particular non covalent interaction better, but also easily predict the interaction energies and structures of a particular non covalent complex, which might otherwise be very hard or resource consuming to be known. This means that substituent effect is indeed a useful tool to be used in supramolecular chemistry and therefore, many valuable studies remain to be carried out.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.21905033,52271201)the Key Research and DevelopmentProgram of Sichuan Province(Grant No.2022YFG0100)+1 种基金the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(Grant No.2022ZYD0045)the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(Grant No.2020P4FZG02A)
文摘The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.
基金This work is supported by the National Natural Science Foundation of China (No.20675009 and No.90922023) and the Research Fund for the Doctoral Program of Higher Education of China (No.273914).
文摘The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order CI〈Br〈I, and hydrogen bonding is stronger than the corresponding halogen bond- ing. So, hydrogen bonding complexes should be dominant in trihalomethanes. However, it is possible that halogen bonding complex is competitive, even preponderant, in triiodomethane due to the similar interaction energy. This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.
基金supported by the National Natural Science Foundation of China(30371009, 30471218) Science Foundation of Fujian Department of Education (JA03059)
文摘In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.
基金the National Natural Science Foundation of China (No.20574041)
文摘Hyperbranched poly(amine-ester)s bearing self-complementary quadruple hydrogen bonding units display excellent mechanical and temperature-dependent melt rheological properties, which make them suitable as novel hot-melting materials.
基金supported by the National Natural Science Foundation of China (No. 20971080)the Natural Science Foundation of Shandong Province (No. ZR2009BM026 and ZR2009BL002)
文摘A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.
文摘The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific
文摘Density functional theory B3LYP method with 6-31++G** basis was used to optimize the geometries of the ground states for 1,2,3-triazine-(H2O)n(n=1,2,3) complexes. All calculations indicate that the 1,2,3- triazine-water complexes in the ground states have strong hydrogen-bonding interaction, and the complex having a N… .H-O hydrogen bond and a chain of water molecules which is terminated by a O. … .H-C hydrogen bond is the most stable. The H-O stretching modes of complexes are red-shifted relative to that of the monomer. In addition, the Natural bond orbit (NBO) analysis indicates that the intermolecular charge transfer between 1,2,3-triazine and water is 0.0222e, 0.0261e and 0.0273e for the most stable 1:1, 1:2 and 1:3 complexes, respectively. The first singlet (n, π*) vertical excitation energy of the monomer 1,2,3-triazine and the hydrogen-bonding complexes of 1,2,3-triazine-(H2O)n were investigated by time-dependent density functional theory.
文摘A stable Sc phase is formed through hydrogen bonding between side-chain aromatic acid groups of polysiloxane: Bending of polysiloxane with N-Acetyl Latimic acid (NAA) gives a chiral S c * phase; The influence of polymerism and hydrogen bond induction effect over mesophase is discussed. The influence of NAA over mesophase is studied.
基金supported by National Natural Science Foundation of China (Grant Nos.10774057 and 10974067)
文摘This paper reports that vibrational spectroscopic analysis on hYdrogen-bonding between acetone and water comprises both experimental Raman spectra and ab initio calculations on structures of various acetone/water complexes with changing water concentrations. The optimised geometries and wavenumbers of the neat acetone molecule and its complexes are calculated by using ab initio method at the MP2 level with 6-311+G(d,p) basis set. Changes in wavenumber position and linewidth (fullwidth at half maximum) have been explained for neat as well as binary mixtures with different mole fractions of the reference system, acetone, in terms of intermolecular hydrogen bonding. The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the concentration dependent changes in the spectral features in terms of hydrogen bonding.
基金supported by the National Key Research and Development Program of China (No.2016YFB0100511)
文摘The practical application of silica-based composites as an alternative to commercial graphite anode materials is hampered by their large volumetric expansion,poor conductivity,and low Coulombic efficiency.In this work,a novel silica/oxidized mesocarbon microbead/amorphous carbon(SiO2/O’MCMB/C)hierarchical structure in which SiO2 is sandwiched between spherical graphite and amorphous carbon shell was succes sfully fabricated through hydrogen bonding-assisted self-assembly and post-carbon coating method.The obtained three-layer hierarchical structure effectively accommodates the volumetric expansion of SiO2 and significantly enhances the electronic conductivity of composite materials.Moreover,the outer layer of amorphous carbon effectively increases the diffusion rate of lithium ions and promotes the formation of stable SEI film.As a result,the SiO2/O’MCMB/C composite exhibits superior electrochemical performance with a reversible capacity of 459.5 mA h/g in the first cycle,and the corresponding Coulombic efficiency is 62.8%.After 300 cycles,the capacity climbs to around 600 mA h/g.This synthetic route provides an efficient method for preparing SiO2 supported on graphite with excellent electrochemical performance,which is likely to promote its commercial applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.11075094)
文摘In this paper, we report on a series of computational simulations on hydrogen bonding in two ice phases (Ih and Ic) using CASTEP with PW91 and RPBE exchange-correlation based on ab initio density functional theory. The strength of the H-bond is correlated with intramolecular O-H stretching, and the energy splitting exists for both the H-bond and covalent O-H stretching. By analyzing the dispersion relationship of to(q), we observe the separation of the longitudinal optic (LO) mode from transverse optic (TO) mode at the gamma point, seemingly interpreting the controversial two H-bond peaks in the vibrational spectrum of ice recorded by inelastic incoherent neutron scattering experiments. The test of ambient environment on phonon density of sates (PDOS) shows that the relaxed tetrahedral structure is the most stable structural configuration for water clusters.
基金supported by the National Natural Science Foundation of China (No.20574041).
文摘The title block copolymer (defined as PSUEA) containing pendant,self-complementary quadruple hydrogen bonding sites has been prepared successfully by three steps.First,poly(styrene-b-2-hydroxyethyl acrylate) (defined as PSHEA) was prepared by living radical polymerizing 2-hydroxyethyl acrylate (HEA) initiated by polystyrene (PSt) macro- initiator,which was prepared via nitroxide-mediated polymerization (NMP) technique.After treated by excessive 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (IPDI),...
基金supported by 973 Program (2006CB932900)NNSFC (20571074)NSF of Fujian Province (2007J172)
文摘The title compound [In(H2ip)(pdc)(H2O)] (H3ip = 5-hydroxyisophthalic acid, H2Pdc = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21/c with a = 13.830(8), b = 6.488(4), c = 17.632(10)A^°, β = 92.510(10)°, C15H10InNO10, Mr= 479.06, V = 1580.6(15)A^°3, Z = 4, De= 2.013 g/cm^3, F(000) = 944,μ = 1.557 mm^-1, the final R = 0.0413 and wR = 0.0793 for 2950 observed reflections with I 〉 2σ(I). The In(Ⅲ) ion is seven-coordinated in a slightly distorted penta-bipyramidal geometry. The mixed ligands connect the In(Ⅲ) ions into 21 helical chains along the [010] direction, and the hydrogen bonds assemble the chains into a three-dimensional supramolecular network.
基金Supported by the National Natural Science Foundation of China! (Grant No. 29574164 and 29974015)
文摘After a concise introduction of hydrogen bonding effects in solute-solute and solutesolvent bonding, the design of polymeric adsorbents based on hydrogen bonding, selectivity in adsorption through hydrogen bonding. and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.
基金supported by the University Science Foundation of Anhui Province (No.KJ2009B104)the Applied Chemistry Key Constructing Subject of Anhui Province (No.200802187C)
文摘The title complex [Cu(L1)(L2)(H2O)]·H2O(1,HL1 = N-(imino(pyridin-2-yl)me-thyl)picolinamidine),HL2 = salicylic acid) has been obtained by volatilization method with L1 prepared from 2,4,6-tripyridyl-1,3,5-triazine in situ.1 was fully characterized by single-crystal X-ray diffraction,elemental analysis and FT-IR.This complex exhibits a three-dimensional frame-work constructed through hydrogen bonding and C-H···π stacking interactions.The cyclic voltametric behavior of complex 1 was also investigated.1 belongs to the monoclinic system,space group P21/c with a = 15.112(5),b = 7.115(2),c = 19.899(6) ,β = 112.32°,V = 1979.4(11) 3,Mr = 460.94,Dc = 1.540 g/cm3,F(000) = 948,μ = 1.146 mm-1,Z = 4,the final R = 0.0612 and wR = 0.1813 for 2510 observed reflections with I 2σ(I).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21264016,11464047,and 21364016)the Joint Funds of Xinjiang Natural Science Foundation,China(Grant No.2015211C298)
文摘By employing molecular theory, we systematically investigate the shift of solubility of poly(N-isopropylacrylamide)(PNIPAM) brushes in sodium halide solutions. After considering PNIPAM–water hydrogen bonds, water–anion hydrogen bonds, and PNIPAM–anion bonds and their explicit coupling to the PNIPAM conformations, we find that increasing temperature lowers the solubility of PNIPAM, and results in a collapse of the layer at high enough temperatures. The combination of the three types of bonds would yield a decrease in the solubility of PNIPAM following the Hofmeister series: Na Cl>Na Br>Na I. PNIPAM–water hydrogen bonds are affected by water–anion hydrogen bonds and PNIPAM–anion bonds. The coupling of polymer conformations and the competition among the three types of bonds are essential for describing correctly a decrease in the solubility of PNIPAM brushes, which is determined by the free energy associated with the formation of the three types of bonds. Our results agree well with the experimental observations, and would be very important for understanding the shift of the lower critical solution temperature of PNIPAM brushes following the Hofmeister series.
基金This work was supported by the National Natural Science Foundation of China (No.20903026), the Doctoral Scientific Research Foundation of the Natural Science Foundation of Guangdong Province (No.7301567), and the Research Foundation of Guangdong Pharmaceutical University (No.2006YKX05).
文摘The interactions and structures of the urea-water system are studied by an all-atom molecular dynamics (MD) simulation. The hydrogen-bonding network and the radial distribution functions are adopted in MD simulations. The structures of urea-water mixtures can be classified into different regions from the analysis of the hydrogen-bonding network. The urea molecule shows the certain tendency to the self-aggregate with the mole fraction of urea increasing. Moreover, the results of the MD simulations are also compare with the chemical shifts and viscosities of the urea aqueous solutions, and the statistical results of the average number hydrogen bonds in the MD simulations are in agreement with the experiment data such as chemical shifts of the hydrogen atom and viscosity.
文摘A novel model for the 1: 2 complex of piperazine with some phenols in solution is established and verified. In CDCl3 solution, one piperazine molecule is tied to two phenol molecules by hydrogen bonds of O-H---N and N-H---O. And the protons of >NH and -OH groups exchange quickly and simultaneously between the atoms of phenol oxygen and piperazine nitrogen.
文摘Semi-empirical AMI method was used to study 1:1 and 1:2 hydrogen bond complexes formed with perylene dianhydride and pyridine derivatives. The weak interaction energy become bigger as the number of hydrogen bonds increases. The donor groups on the host and electron-withdrawing groups on the guest molecules favor hydrogen bonding interactions, and the formation of hydrogen bonding leads to electron density flow from the host to the guest molecules. Electronic spectra of these complexes were computed using INDO/SCI method. Blue-shift of the clectronic absorption spectra for the complexes, comparing that of the host, takes place, and the first peaks for different complexes changed slightly. These are in agreement with the experimcntal results. The cause of blue-shift was discussed, and the electronic transitions were assigned based on theoretical calculations. The potential curve of double proton transfer in the complex was calculated, and the transition state and activated energy relative to the N H bond were obtained.
基金Supported by the National Natural Science Foundation of China(No. 2 9972 0 38)
文摘B3LYP/6 31+g( d ) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H 2O as well as NH 3. It was found that some properties of the non covalent complexes, including the interaction energies, donor acceptor (host guest) distances, bond lengths, and vibration frequencies, could show well defined substituent effects. Thus, from the substituent studies we can not only understand the mechanism of a particular non covalent interaction better, but also easily predict the interaction energies and structures of a particular non covalent complex, which might otherwise be very hard or resource consuming to be known. This means that substituent effect is indeed a useful tool to be used in supramolecular chemistry and therefore, many valuable studies remain to be carried out.