期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Modeling and Simulation of Hydrogen Energy Storage System for Power-to-gas and Gas-to-power Systems 被引量:3
1
作者 Jianlin Li Guanghui Li +3 位作者 Suliang Ma Zhonghao Liang Yaxin Li Wei Zeng 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第3期885-895,共11页
By collecting and organizing historical data and typical model characteristics,hydrogen energy storage system(HESS)-based power-to-gas(P2G)and gas-to-power systems are developed using Simulink.The energy transfer mech... By collecting and organizing historical data and typical model characteristics,hydrogen energy storage system(HESS)-based power-to-gas(P2G)and gas-to-power systems are developed using Simulink.The energy transfer mechanisms and numerical modeling methods of the proposed systems are studied in detail.The proposed integrated HESS model covers the following system components:alkaline electrolyzer(AE),highpressure hydrogen storage tank with compressor(CM&H_(2) tank),and proton-exchange membrane fuel cell(PEMFC)stack.The unit models in the HESS are established based on typical U-I curves and equivalent circuit models,which are used to analyze the operating characteristics and charging/discharging behaviors of a typical AE,an ideal CM&H_(2) tank,and a PEMFC stack.The validities of these models are simulated and verified in the MicroGrid system,which is equipped with a wind power generation system,a photovoltaic power generation system,and an auxiliary battery energy storage system(BESS)unit.Simulation results in MATLAB/Simulink show that electrolyzer stack,fuel cell stack and system integration model can operate in different cases.By testing the simulation results of the HESS under different working conditions,the hydrogen production flow,stack voltage,state of charge(SOC)of the BESS,state of hydrogen pressure(SOHP)of the HESS,and HESS energy flow paths are analyzed.The simulation results are consistent with expectations,showing that the integrated HESS model can effectively absorb wind and photovoltaic power.As the wind and photovoltaic power generations increase,the HESS current increases,thereby increasing the amount of hydrogen production to absorb the surplus power.The results show that the HESS responds faster than the traditional BESS in the microgrid,providing a solid theoretical foundation for later wind-photovoltaic-HESS-BESS integration. 展开更多
关键词 hydrogen energy storage system(HESS) green electricity hydrogen production compressor hydrogen storage tank proton-exchange membrane fuel cell(PEMFC) wind-photovoltaic-HESS-BESS integration
原文传递
Generation of typical operation curves for hydrogen storage applied to the wind power fluctuation smoothing mode 被引量:4
2
作者 Yanhui Xu Yijia Xu Yan Huang 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期353-361,共9页
In this paper,a typical-operation-curve generation method of a hydrogen energy storage system operating under the mode of stabilizing wind power fluctuations is proposed.This method is used to optimize the power and c... In this paper,a typical-operation-curve generation method of a hydrogen energy storage system operating under the mode of stabilizing wind power fluctuations is proposed.This method is used to optimize the power and capacity configuration of the energy storage system.The time series curves of the charging and discharging powers of the hydrogen energy storage are obtained by EMD decomposition,and the curves are classified according to the similarities and differences of the characteristic parameters in different time periods.After the classification,typical charging and discharging power values of each type of curve at each moment are obtained by a cloud model,and then,typical operation curves of each type are obtained by integration.On this basis,the power and capacity of the energy storage system are optimized with the objective of economic optimization through the MATLAB CPLEX toolbox.Combined with the measured data of a wind farm with an installed capacity of 400 MW in Northeast China,the validity and rationality of the typical operation curve generation method proposed in this paper are verified. 展开更多
关键词 Wind farm hydrogen energy storage system Cluster analysis Typical operation curves Capacity configuration
下载PDF
An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling 被引量:2
3
作者 张羊换 WANG Jinglong +3 位作者 ZHANG Peilong ZHU Yongguo HOU Zhonghui SHANG Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期278-287,共10页
Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydroge... Nanocrystalline and amorphous LaMg_(12)-type LaMg_(11)Ni + x wt% Ni(x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling time on the gaseous and electrochemical hydrogen storage kinetics of as-milled alloys were investigated systematically. The electrochemical hydrogen storage properties of the as-milled alloys were tested by an automatic galvanostatic system. And the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter(DSC) connected with a H_2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. It is found that the increase of Ni content significantly improves the gaseous and electrochemical hydrogen storage kinetic performances of as-milled alloys. Furthermore, as ball milling time changes, the maximum of both high rate discharge ability(HRD) and the gaseous hydriding rate of as-milled alloys can be obtained. But the hydrogen desorption kinetics of alloys always increases with the extending of milling time. Moreover, the improved gaseous hydrogen storage kinetics of alloys are ascribed to a decrease in the hydrogen desorption activation energy caused by increasing Ni content and milling time. 展开更多
关键词 LaMg12 alloy mechanical milling activation energy hydrogen storage kinetics
下载PDF
Comparative techno-economic analysis of large-scale renewable energy storage technologies 被引量:1
4
作者 Lincai Li Bowen Wang +6 位作者 Kui Jiao Meng Ni Qing Du Yanli Liu Bin Li Guowei Ling Chengshan Wang 《Energy and AI》 2023年第4期271-282,共12页
Energy storage is an effective way to address the instability of renewable energy generation modes,such as wind and solar,which are projected to play an important role in the sustainable and low-carbon society.Economi... Energy storage is an effective way to address the instability of renewable energy generation modes,such as wind and solar,which are projected to play an important role in the sustainable and low-carbon society.Economics and carbon emissions are important indicators that should be thoroughly considered for evaluating the feasibility of energy storage technologies(ESTs).In this study,we study two promising routes for large-scale renewable energy storage,electrochemical energy storage(EES)and hydrogen energy storage(HES),via technical analysis of the ESTs.The levelized cost of storage(LCOS),carbon emissions and uncertainty assessments for EESs and HESs over the life cycle are conducted with full consideration of the critical links for these routes.In order to reduce the evaluation error,we use the Monte Carlo method to derive a large number of data for estimating the economy and carbon emission level of ESTs based on the collected data.The results show that lithium ion(Li-ion)batteries show the lowest LCOS and carbon emissions,at 0.314 US$kWh-1 and 72.76 g CO_(2) e kWh^(-1),compared with other batteries for EES.Different HES routes,meaning different combinations of hydrogen production,delivery and refueling methods,show substantial differences in economics,and the lowest LCOS and carbon emissions,at 0.227 US$kWh^(-1) and 61.63 gCO_(2) e kWh^(-1),are achieved using HES routes that involve hydrogen production by alkaline electrolyzer(AE),delivery by hydrogen pipeline and corresponding refueling.The findings of this study suggest that HES and EES have comparable levels of economics and carbon emissions that should be both considered for large-scale renewable energy storage to achieve future decarbonization goals. 展开更多
关键词 Large-scale renewable energy storage Techno-economic analysis Carbon emissions Electrochemical energy storage hydrogen energy storage
原文传递
Development and Application of Hydrogen Storage 被引量:3
5
作者 Yang-huan ZHANG Zhi-chao JIA +3 位作者 Ze-ming YUAN Tai YANG Yan QI Dong-liang ZHAO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第9期757-770,共14页
Hydrogen,as a secure,clean,efficient,and available energy source,will be successfully applied to reduce and eliminate greenhouse gas emissions.Hydrogen storage technology,which is one of the key challenges in developi... Hydrogen,as a secure,clean,efficient,and available energy source,will be successfully applied to reduce and eliminate greenhouse gas emissions.Hydrogen storage technology,which is one of the key challenges in developing hydrogen economy,will be solved through the unremitting efforts of scientists.The progress on hydrogen storage technology research and recent developments in hydrogen storage materials is reported.Commonly used storage methods,such as high-pressure gas or liquid,cannot satisfy future storage requirement.Hence,relatively advanced storage methods,such as the use of metal-organic framework hydrides and carbon materials,are being developed as promising alternatives.Combining chemical and physical hydrogen storage in certain materials has potential advantages among all storage methods.Intensive research has been conducted on metal hydrides to improve their electrochemical and gaseous hydrogen storage properties,including their hydrogen storage capacity,kinetics,cycle stability,pressure,and thermal response,which are dependent on the composition and structural feature of alloys.Efforts have been exerted on a group of magnesium-based hydrides,as promising candidates for competitive hydrogen storage,to decrease their desorption temperature and enhance their kinetics and cycle life.Further research is necessary to achieve the goal of practical application by adding an appropriate catalyst and through rapid quenching or ball milling.Improving the kinetics and cycle life of complex hydrides is also an important aspect for potential applications of hydrogen energy. 展开更多
关键词 hydrogen storage hydrogen energy metal hydride complex hydride research progress
原文传递
Hydrogen Storage Kinetics of Nanocrystalline and Amorphous LaMg_(12)-Type Alloy–Ni Composites Synthesized by Mechanical Milling 被引量:1
6
作者 Yanghuan Zhang Baowei Li +4 位作者 Huiping Ren Tai Yang Shihai Guo Yan Qi Dongliang Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期218-225,共8页
The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systemati... The nanocrystalline and amorphous LaMg11Ni + x wt% Ni (x = 100, 200) composites were synthesized by the mechanical milling, and their gaseous and electrochemical hydrogen storage kinetics performance were systematically investigated, The results indicate that the as-milled composites exhibit excellent hydrogen storage kinetic performances, and increasing Ni content significantly facilitates the improvement of the hydrogen storage kinetics properties of the composites. The gaseous and electrochemical hydrogen storage kinetics of the composites reaches a maximum value with the variation of milling time. Increasing Ni content and milling time both make the hydrogen desorption activation energy lower, which are responsible for the enhancement in the hydrogen storage kinetics properties of the composites. The diffusion coefficient of hydrogen atom and activation enthalpy of charge transfer on the surface of the as-milled composites were also calculated, which are considered to be the dominated factors for the electrochemical high rate discharge ability. 展开更多
关键词 LaMg12 alloy Mechanical milling Activation energy hydrogen storage kinetics
原文传递
Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling 被引量:1
7
作者 Jin-liang Gao Yan Qi +3 位作者 Ya-qin Li Hong-wei Shang Dong-liang Zhao Yang-huan Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第2期198-205,共8页
To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMgllNi+x wt.% Ni (x=100, 200) alloys were prepared via mechanical milling. The phase st... To improve the hydrogen storage performance of PrMg12-type alloys, Ni was adopted to replace partially Mg in the alloys. The PrMgllNi+x wt.% Ni (x=100, 200) alloys were prepared via mechanical milling. The phase structures and morphology of the experimental alloys were in vestigated by X-ray diffraction and transmission electron microscopy. The results show that increasing milling time and Ni content accelerate the formation of nanocrystalline and amorphous structure. The gaseous hydrogen storage properties of the experimental alloys were determined by differential scanning calorimetry (DSC) and Sievert apparatus. In addition, increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5. 572 wt. % for the x = 100 alloy and 5. 829 wt. % for the x = 200 alloy, respectively. The enthalpy change ( △H ), entropy change (△S) and the dehydrogenation activation energy (Exde) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure. 展开更多
关键词 PrMg12 alloy Mechanical milling Activation energy hydrogen storage dynamics Thermodynamics
原文传递
Hydrogen Storage Thermodynamics and Dynamics of Nd–Mg–NiBased Nd Mg_(12^-)Type Alloys Synthesized by Mechanical Milling 被引量:1
8
作者 Yang-Huan Zhang Ze-Ming Yuan +3 位作者 Wen-Gang Bu Feng Hu Ying Cai Dong-Liang Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第6期577-586,共10页
Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage t... Nanocrystalline and amorphous Nd Mg_(12^-)type Nd Mg_(11)Ni+ x wt% Ni(x=100, 200) hydrogen storage alloys were synthesized by mechanical milling. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were systematically investigated. The gaseous hydrogen absorption and desorption properties were investigated by Sieverts apparatus and differential scanning calorimeter connected with a H_2 detector. Results show that increasing Ni content significantly improves hydrogen absorption and desorption kinetics of the alloys. Furthermore,varying milling time has an obvious effect on the hydrogen storage properties of the alloys. Hydrogen absorption saturation ratio(R^a_(10); a ratio of the hydrogen absorption capacity in 10 min to the saturated hydrogen absorption capacity) of the alloys obtains the maximum value with varying milling time. Hydrogen desorption ratio(R^d_(20), a ratio of the hydrogen desorption capacity in 20 min to the saturated hydrogen absorption capacity) of the alloys always increases with extending milling time. The improved hydrogen desorption kinetics of the alloys are considered to be ascribed to the decreased hydrogen desorption activation energy caused by increasing Ni content and milling time. 展开更多
关键词 NdMg12 alloy hydrogen storage Mechanical milling Activation energy Kinetics
原文传递
The First Principles Study of Li, Al and Ca Doped Zigzag(7,0) Single Walled Carbon Nanotube 被引量:1
9
作者 张亚飞 张红 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第5期731-739,共9页
We use the ab initio density functional theory to calculate the band structure, density of states, charge transfer, charge density difference, binding energy and vibration frequency. We can see that the conduction ban... We use the ab initio density functional theory to calculate the band structure, density of states, charge transfer, charge density difference, binding energy and vibration frequency. We can see that the conduction band through the Fermi level include SWNT/H_2/Li, SWNT/H_2/Al and SWNT/H_2/Ca, which shows a kind of metallic character. The charge distribution and contour plots of charge difference density of ion/H_2/SWNT show charge transfer between ion and H_2 molecules rather than between H_2 and H_2. Meanwhile, the interaction between Al, Ca and H_2 is weaker than that of Li. We can also prove that the ion is the primary reason to the increase of adsorption energy of hydrogen molecule in SWNT. Finally, we calculate the vibration frequency and don't find any imaginary frequency, which proves that the(7,0) SWNT is more stable. 展开更多
关键词 hydrogen storage carbon nanotube binding energy density functional theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部