期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Conceptual Strategy for Mitigating the Risk of Hydrogen as an Internal Hazard in Case of Severe Accidents at Nuclear Power Plant Considering Existing Risks and Uncertainties Associated with the Use of Traditional Strategies
1
作者 Arman Grigoryan 《World Journal of Nuclear Science and Technology》 CAS 2024年第3期165-177,共13页
Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydroge... Hydrogen challenge mitigation stands as one of the main objectives in the management of severe accidents at Nuclear Power Plants (NPPs). Key strategies for hydrogen control include atmospheric inertization and hydrogen removal with Passive Autocatalytic Recombiners (PARs) being a commonly accepted approach. However, an examination of PAR operation specificity reveals potential inefficiencies and reliability issues in certain severe accident scenarios. Moreover, during the in-vessel stage of severe accident development, in some severe accident scenarios PARs can unexpectedly become a source of hydrogen detonation. The effectiveness of hydrogen removal systems depends on various factors, including the chosen strategies, severe accident scenarios, reactor building design, and other influencing factors. Consequently, a comprehensive hydrogen mitigation strategy must effectively incorporate a combination of strategies rather than be based on one strategy, taking into consideration the probabilistic risks and uncertainties associated with the implementation of PARs or other traditional methods. In response to these considerations, within the framework of this research it has been suggested a conceptual strategy to mitigate the hydrogen challenge during the in-vessel stage of severe accident development. 展开更多
关键词 Severe Accident Management Nuclear Power Plant hydrogen risk mitigation risk Management Passive Autocatalytic Recombiner
下载PDF
Development of CONTHAC-3D and hydrogen distribution analysis of HPR1000
2
作者 Hui Wang Jing-Jing Li +2 位作者 Yuan Chang Gong-Lin Li Ming Ding 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期210-221,共12页
An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be ap... An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be applied to predict gas flow,diffusion,and steam condensation in a containment during a severe hypothetical accident,as well as to obtain an estimate of the local hydrogen concentration in various zones of the containment.CONTHAC-3D was developed using multiple models to simulate the features of the proprietary systems and equipment of HPR1000 and ACP100,such as the passive cooling system,passive autocatalytic recombiners and the passive air cooling system.To validate CONTHAC-3D,a GX6 test was performed at the Battelle Model Containment facility.The hydrogen concentration and temperature monitored by the GX6 test are accurately predicted by CONTHAC-3D.Subsequently,the hydrogen distribution in the HPR1000 containment during a severe accident was studied.The results show that the hydrogen removal rates calculated using CONTHAC-3D for different types of PARs agree well with the theoretical values,with an error of less than 1%.As the accident progresses,the hydrogen concentration in the lower compartment becomes higher than that in the large space,which implies that the lower compartment has a higher hydrogen risk than the dome and large space at a later stage of the accident.The amount of hydrogen removed by the PARs placed on the floor of the compartment is small;therefore,raising the installation height of these recombiners appropriately is recommended.However,we do not recommend installing all autocatalytic recombiners at high positions.The study findings in regard to the hydrogen distribution in the HPR1000 containment indicate that CONTHAC-3D can be applied to the study of hydrogen risk containment. 展开更多
关键词 hydrogen risk mitigation Pressurized water reactor HPR1000 Thermal hydraulic CONTHAC-3D
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部