Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to invest...Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.展开更多
According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperatu...According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.展开更多
Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile ...Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile located in the Fujian Province,aiming to validate whether hydroxyl stable isotopes can indicate paleo-precipitation and paleo-temperature.Our results indicate that the d D and δ^(18)O_(OH)changes in the kaolinite hydroxyl of the weathering profile are basically determined by the isotopic composition of paleo-meteoric water and paleotemperature,respectively.Nevertheless,whether the d D and δ^(18)O_(OH)of kaolinite can quantitatively indicate paleo-precipitation and paleo-temperature needs to be verified further,and especially,the structural oxygen isotopic composition that is the essential element for the kaolinite formation temperature calculation has to be constrained in future work.展开更多
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and dau...The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.展开更多
The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the in...The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the influence展开更多
Developing low-cost,efficient,and stable non-precious-metal electrocatalysts with controlled crystal structure,morphology and compositions are highly desirable for hydrogen and oxygen evolution reactions.Herein,a seri...Developing low-cost,efficient,and stable non-precious-metal electrocatalysts with controlled crystal structure,morphology and compositions are highly desirable for hydrogen and oxygen evolution reactions.Herein,a series of phosphorus-doped Fe_(7)S_(8)nanowires integrated within carbon(P-Fe_(7)S_(8)@C)are rationally synthesized via a one-step phosphorization of one-dimensional(1D)Fe-based organicinorganic nanowires.The as-obtained P-Fe_(7)S_(8)@C catalysts with modified electronic configurations present typical porous structure,providing plentiful active sites for rapid reaction kinetics.Density functional calculations demonstrate that the doping Fe_(7)S_(8)with P can effectively enhance the electron density of Fe_(7)S_(8)around the Fermi level and weaken the Fe-H bonding,leading to the decrease of adsorption free energy barrier on active sites.As a result,the optimal catalyst of P-Fe_(7)S_(8)-600@C exhibits a relatively low overpotential of 136 mV for hydrogen evolution reaction(HER)to reach the current density of 10 mA/cm^(2),and a significantly low overpotential of 210 mV for oxygen evolution reaction(OER)at 20 mA/cm^(2)in alkaline media.The work presented here may pave the way to design and synthesis of other prominent Fe-based catalysts for water splitting via electronic regulation.展开更多
High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In par...High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.展开更多
Isotopic fractionation is the basis of tracing the water cycle using hydrogen and oxygen isotopes. Isotopic fractionation factors in water evaporating from free water bodies are mainly affected by temperature and rela...Isotopic fractionation is the basis of tracing the water cycle using hydrogen and oxygen isotopes. Isotopic fractionation factors in water evaporating from free water bodies are mainly affected by temperature and relative humidity, and vary significantly with these atmospheric factors over the course of a day. The evaporation rate (E) can reveal the effects of atmospheric factors. Therefore, there should be a certain functional relationship between isotopic fractionation factors and E. An average isotopic fractionation factor ( t~* ) was defined to describe isotopic differences between vapor and liquid phases in evaporation with time intervals of days. The relationship between or* and E based on the isotopic mass balance was investigated through an evaporation pan experiment with no inflow. The experimental results showed that the isotopic compositions of residual water were more enriched with time; tr* was affected by air temperature, relative humidity, and other atmospheric factors, and had a strong functional relation with E. The values of 0~* can be easily calculated with the known values of E, the initial volume of water in the pan, and isotopic compositions of residual water.展开更多
Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(1...Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(18)O and δ^(2) H)of precipitation,groundwater,river water and lake water during 2019-2020 in Qinghai Lake Basin to reveal the spatial and temporal characteristics of groundwater recharge.The local meteoric water line was simulated using ordinary least squares regression(δ^(2) H=7.80δ^(18)O+10.60).The local evaporation lines of the river water,lake water and groundwater were simulated asδ^(2) H=6.21δ^(18)O-0.72,δ^(2) H=5.73δ0-3.60 and δ^(2) H=6.59δ0+1.76,respectively.The δ^(2) H and δ^(18)O of river water and groundwater were in more depleted values due to the recharge by precipitation at high altitudes or precipitation effects,and theδ^(2) H andδ^(18)O of the lake water were in more enriched values because of evaporation.The relationship between the δ^(2) H and δ^(18)O of groundwater and river water was not significantly different,indicating a strong hydrological connection between the groundwater and river water surrounding Qinghai Lake.Additionally,the maximum values of δ^(18)O and the minimum values of lc-excess of groundwater in most regions were both in August,and the minimum values of δ^(18)O and the maximum values of lc-excess of groundwater in most regions were both in October.Therefore,the groundwater was recharged by soil water with strong evaporation in August and recharged by precipitation at high altitudes in October.The recharge rate of groundwater was relatively fast in areas with large slopes and large hydraulic gradients(e.g.,south of Qinghai Lake),and in areas with strong hydrological connections between the groundwater and river water(e.g.,the Buha River Valley).Those results can provide data support for protection and utilization of water resources in Qinghai Lake Basin,and provide reference for groundwater research in closed lake basins on the Qinghai-Tibet Plateau.展开更多
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are use...Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.展开更多
[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth pe...[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth period of summer maize in Huaibei Plain were analyzed using the 26-year long series of data from the Wudaogou Hydrological Experimental Station,combined with the hydrogen and oxygen stable isotope tracing method.[Results]The average soil moisture content of summer maize in different growth periods showed a trend of first decreasing,then increasing and then decreasing with the increase of soil depth.The average soil moisture content was the lowest at the surface soil layer.From the characteristic values of hydrogen and oxygen isotopes of atmospheric precipitation,soil water and groundwater,it can be known that the average values ofδ18O andδD of soil water decreased with the increase of soil depth,indicating that soil moisture evaporation leads to the enrichment of soil heavy isotopes,and the degree of enrichment decreased from the surface layer to the deep layer of the soil.The seasonal variation of the stable isotope of hydrogen and oxygen in soil water declined with the increase of soil depth.The soil water changes at 30 cm and 50 cm soil depths were the most obvious.The soil was easily recharged by precipitation,and soil evaporation was relatively strong.[Conclusions]The research results are favorable for in-depth understanding of the regional water cycle process,and are expected to provide a certain scientific basis for realizing the efficient and sustainable use of regional groundwater.展开更多
In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of al...In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of all energies. Then through the space dimension reduction projections, the Gell-Mann standard model was obtained as well as a quantum to Classical connection was made via introducing Bose distribution to the monopoles to obtain the Perelman entropy and Ricci Flow mappings. This provided us a picture to the creation of Astronomical objects, from galaxies to stars and planets. This method of splitting the monopole energy into ranges is extended to show that below the basic rest mass range of the electron and Quark, it still can be applied to explaining for the creation of the chemical elements periodic table. But perhaps the most interesting is in the lowest hundreds of Hz energy range, obtained from yet another 3 fold space symmetry breaking, into 2D × 1D, producing bio nitrogenous bases composed of 3 Carbon 12 in hexagon structures, due to preservation of the 1D monopole standing waves of this low frequencies. From that by imposing gauge changes the monopole states into DNA spectra. Since such spectra states retain the DLRO, it induces formation of charge carriers periodicity in a spherical bio cell.. It was then argued that due to cell’s surface proteins, the structure must contain partial filled VB, with “p” state hole density, and empty CB, separated from VB by a positive band gap. Such band structures resemble known HTC Cuprate ceramics. Since the HTC goes through a Superconductivity transition via the simultaneous bose exciton condensation, providing a Coulomb pressure, which reduces the band gap substantially, and induces the ODLRO transition of the hole density. The same obviously applies to the bio cells. Because of the near continuous exciton levels generated, a matching to the DNA spectra then can always occur by selective choices of proteins on the cell surface. Judging from a numerical study, we did years ago on YBCO, with doping. We found with a large enough VB hole density, the exciton induced superconducting gap can easily lead to <em>T</em><em>c</em> in the room temperature range. In fact by EMF excitation can increase the exciton pressure and trigger the ODLRO transition <em>T</em><em>c</em> upward. In fact, numerical results then suggest there do exist coherent EMF spectra from three key elements: Water, Carbon and Hydrogen, together with Oxygen, as studied over the years by numerous people, starting from Schr<span style="white-space:nowrap;">ö</span>dinger to most recently Geesink.展开更多
In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological s...In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.展开更多
The Qaidam Basin is a large intermontane depression in Qinghai Province,China,which located on the northern margin of the Tibet plateau,and surrounded by the Qilian,Kunlun and Aljun mountains which rise to more than 5...The Qaidam Basin is a large intermontane depression in Qinghai Province,China,which located on the northern margin of the Tibet plateau,and surrounded by the Qilian,Kunlun and Aljun mountains which rise to more than 5000m.Some 27 salt lakes occur within the basin,occupying an area of approximately 1500 km2.Additionally,there are extensive areas of dry playas.Together,the playas and salt lakes cover about one quarter of the total basin area.Whereas the western展开更多
Sichuan Basin is one of the most important marine–salt forming basins in China. The Simian and Triassic have a large number of evaporites. The Triassic strata have found a large amount of polyhalite and potassium-ric...Sichuan Basin is one of the most important marine–salt forming basins in China. The Simian and Triassic have a large number of evaporites. The Triassic strata have found a large amount of polyhalite and potassium-rich brine. However, no soluble potassium salt deposit were found. In this study, the halite in well Changping 3 which is located at the eastern part of the Sichuan basin was studied using the characteristics, hydrogen and oxygen isotopes of the fluid inclusion in halite to reconstruct the paleoenvironment. The salt rocks in well Changping 3 can be divided into two types: grey salt rock and orange salt rock. The result shows that the isotopic composition of the halite fluid inclusion is distinct from the global precipitation line reflecting that the salt formation process is under strong evaporation conditions and the climate is extremely dry. At the same time, compared with the hydrogen and oxygen isotopes of brine in the Sichuan Basin and the hydrous isotope composition of the inclusions in the salt inclusions of other areas in China, it is shown that the evaporation depth of the ancient seawater in the Sichuan Basin was high and reached the precipitation of potassium and magnesium stage.展开更多
The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In thi...The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In this paper, several evaporation experiments were conducted in order to study the stable isotopic fractionation mechanism of water and analyze the influence of different temperatures on evaporation fractionation. Three group experiments of water evaporation under different temperatures and initial isotopic values were carried out. The results show that fractionation factors of hydrogen and oxygen may increase with temperature, and the average enrichment degree of hydrogen isotope D is 3.432 times that of oxygen isotope 18O. The results also show that the isotopic composition of the initial water has little influence on water evaporation fractionation, which is mainly affected by the state variables in the evaporation process, such as temperature. This research provides experimental data for further understanding the evaporation fractionation mechanism.展开更多
The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually character...The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.展开更多
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discov...The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ^(18)O_(H2O) values calculated from the δ^(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.展开更多
Despite the increasing depletion of the groundwater at the Zhangjiakou aquifer system in the northwest of Beijing-Tianjin-Hebei region,little information is available on the hydrological process of groundwater in this...Despite the increasing depletion of the groundwater at the Zhangjiakou aquifer system in the northwest of Beijing-Tianjin-Hebei region,little information is available on the hydrological process of groundwater in this region.In this study,we utilized water isotopes composition(51sO,5D and 3H)of groundwater,river and precipitation to identify the characteristics of hydrochemistry,groundwater age and recharge rates in different watersheds of the Zhangjiakou area.Results showed that the river water and groundwater could be characterized as HCO3-Mg Na,HCO3 CI-Na and HCO3-Mg Na,HCO3 CI-Na,HCO3 CI-Na Mg types,respectively.The 5D and 5180 values in precipitation were linearly correlated,which is similar to the Global Meteorological Water Line(GMWL).Furthermore,the decreasing values of the 6D and 5180 from precipitation to surface water and groundwater indicate that groundwater is mainly recharged by atmospheric precipitation.In addition,the variation of 3H concentration with depth suggests that groundwater shallower than around 100 m is generally modern water.In contrast,groundwater deeper around 100 m is a mixture of modern and old waters,which has longer residence times.Groundwater showed a relatively low tritium concentration in the confined aquifers,indicating the groundwater recharged might be relatively old groundwater of over 60 years.The flow velocity of the groundwater in the study area varied from 1.10 to 2.26 m/a,and the recharge rates ranged from 0.034 to 0.203 m/a.The obtained findings provide important insights into understanding the groundwater recharge sources and hydrochemistry in the Zhangjiakou area,in turn developing a sustainable groundwater management plan.展开更多
The hyporbeic zone plays an important role in groundwater and stream water quality protection. To investigate the stream-groundwater interaction mechanisms in the lateral hyporheic zone, this study examined Ma'an Cre...The hyporbeic zone plays an important role in groundwater and stream water quality protection. To investigate the stream-groundwater interaction mechanisms in the lateral hyporheic zone, this study examined Ma'an Creek in Chongqing during the dry season from December 2015 to April 2016. The water level, water temperature, pH and CF concentration in the hyporheic zone and groundwater were monitored in situ. The sediment permeability coefficient, stable isotopes of hydrogen and oxygen and concentration of DOC were analyzed. The results show that the water level changes of hyporheic zone and the movement of hyporheic flow were influenced significantly by the permeability coefficient of sediment. The hyporheic flow approximately 10 cm from the stream bank was clearly affected by precipitation infiltration and evapotranspiration. During the study period, the groundwater recharged the stream, and the impact of groundwater on the hyporheic flow gradually decreased with the flow path. The hyporheic flow approximately 30 cm from the stream bank was still mainly affected by groundwater. Approximately 10-30 cm from the stream bank, the mixing of groundwater with precipitation and stream water intensified. Due to the sediment properties, moisture accumulated approximately 10 cm from the stream bank and drained into the stream via hyporheic flow, with potential impacts on stream water quality.展开更多
基金supported by the National Natural Science Foundation of China(50979065,51109154 and 51249002)the Natural Science Foundation of Shanxi Province,China(2012021026-2)+2 种基金the Program for Science and Technology Development of Shanxi Province,China(20110311018-1)the Specialized Research Fund for the Doctoral Program of Higher Education,China(20111402120006,20121402110009)the Program for Graduate Student Education and Innovation of Shanxi Province,China(2015BY27)
文摘Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.
基金financially supported by the China Geological Survey (No. 1212011220014)。
文摘According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.41225020 and41376049)National Programme on Global Change and Air-Sea Interaction(GASI-GEOGE-03)
文摘Recent studies suggest that the hydrogen and oxygen isotopic compositions of clay minerals can indicate paleoclimate.Here,we report mineralogy and stable isotopic records(d D and δ^(18)O_(OH))of a weathering profile located in the Fujian Province,aiming to validate whether hydroxyl stable isotopes can indicate paleo-precipitation and paleo-temperature.Our results indicate that the d D and δ^(18)O_(OH)changes in the kaolinite hydroxyl of the weathering profile are basically determined by the isotopic composition of paleo-meteoric water and paleotemperature,respectively.Nevertheless,whether the d D and δ^(18)O_(OH)of kaolinite can quantitatively indicate paleo-precipitation and paleo-temperature needs to be verified further,and especially,the structural oxygen isotopic composition that is the essential element for the kaolinite formation temperature calculation has to be constrained in future work.
基金jointly supported by the Geological Survey of China (Grant No. 1212011140050)the National Natural Science Foundation of China (Grant No. 41663006)
文摘The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor-liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daugh- ter-beating inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-tem- perature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ^18O values of chalcopyrite- bearing quartz ranged from 4.96‰ to 5.86%0, with an average of 5.40%0. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from - 87‰ to - 107‰, with an average of - 97.86%0. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ^34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.
文摘The Ordovician was an important transitional period for global climate and organic evolution,the global was in the flood and glacial,Onganism was extinction(Zhan,2007;Trotter et al.,2008;Axel et al.,2010).Under the influence
基金the National Natural Science Foundation of China(Nos.21601120 and 21805181)the Science and Technology Commission of Shanghai Municipality(Nos.17ZR1410500 and 19ZR1418100)+1 种基金the High Performance Computing Center of Shanghai UniversityShanghai Engineering Research Center of Intelligent Computing System(No.19DZ2252600)for providing the computing resources and technical support。
文摘Developing low-cost,efficient,and stable non-precious-metal electrocatalysts with controlled crystal structure,morphology and compositions are highly desirable for hydrogen and oxygen evolution reactions.Herein,a series of phosphorus-doped Fe_(7)S_(8)nanowires integrated within carbon(P-Fe_(7)S_(8)@C)are rationally synthesized via a one-step phosphorization of one-dimensional(1D)Fe-based organicinorganic nanowires.The as-obtained P-Fe_(7)S_(8)@C catalysts with modified electronic configurations present typical porous structure,providing plentiful active sites for rapid reaction kinetics.Density functional calculations demonstrate that the doping Fe_(7)S_(8)with P can effectively enhance the electron density of Fe_(7)S_(8)around the Fermi level and weaken the Fe-H bonding,leading to the decrease of adsorption free energy barrier on active sites.As a result,the optimal catalyst of P-Fe_(7)S_(8)-600@C exhibits a relatively low overpotential of 136 mV for hydrogen evolution reaction(HER)to reach the current density of 10 mA/cm^(2),and a significantly low overpotential of 210 mV for oxygen evolution reaction(OER)at 20 mA/cm^(2)in alkaline media.The work presented here may pave the way to design and synthesis of other prominent Fe-based catalysts for water splitting via electronic regulation.
基金the National Natural Science Foundation of China(Grant No.51572166)the Program for Eastern Scholar(Grant No.TP2014041)the China Postdoctoral Science Foundation(Grant No.2021M702073).
文摘High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.
基金supported by the National Natural Science Foundation of China (Grants No.50679024,40901015,and 41001011)the Fundamental Research Funds for the Central Universities (Grants No.B1020072 and B1020062)+2 种基金the Ph. D. Programs Foundation of the Ministry of Education of China (Grant No.20090094120008)the Special Fund of the State Key Laboratory of China (Grant No.2009586412)the Science Foundation of the HydroChina Chengdu Engineering Corporation (Grant No.P058)
文摘Isotopic fractionation is the basis of tracing the water cycle using hydrogen and oxygen isotopes. Isotopic fractionation factors in water evaporating from free water bodies are mainly affected by temperature and relative humidity, and vary significantly with these atmospheric factors over the course of a day. The evaporation rate (E) can reveal the effects of atmospheric factors. Therefore, there should be a certain functional relationship between isotopic fractionation factors and E. An average isotopic fractionation factor ( t~* ) was defined to describe isotopic differences between vapor and liquid phases in evaporation with time intervals of days. The relationship between or* and E based on the isotopic mass balance was investigated through an evaporation pan experiment with no inflow. The experimental results showed that the isotopic compositions of residual water were more enriched with time; tr* was affected by air temperature, relative humidity, and other atmospheric factors, and had a strong functional relation with E. The values of 0~* can be easily calculated with the known values of E, the initial volume of water in the pan, and isotopic compositions of residual water.
基金funded by the National Natural Science Foundation of China(41730854,41877157,42177236)。
文摘Studying spatial and temporal characteristics of regional groundwater recharge will guide the scientific management and sustainable development of regional water resources.This study investigated stable isotopes(δ^(18)O and δ^(2) H)of precipitation,groundwater,river water and lake water during 2019-2020 in Qinghai Lake Basin to reveal the spatial and temporal characteristics of groundwater recharge.The local meteoric water line was simulated using ordinary least squares regression(δ^(2) H=7.80δ^(18)O+10.60).The local evaporation lines of the river water,lake water and groundwater were simulated asδ^(2) H=6.21δ^(18)O-0.72,δ^(2) H=5.73δ0-3.60 and δ^(2) H=6.59δ0+1.76,respectively.The δ^(2) H and δ^(18)O of river water and groundwater were in more depleted values due to the recharge by precipitation at high altitudes or precipitation effects,and theδ^(2) H andδ^(18)O of the lake water were in more enriched values because of evaporation.The relationship between the δ^(2) H and δ^(18)O of groundwater and river water was not significantly different,indicating a strong hydrological connection between the groundwater and river water surrounding Qinghai Lake.Additionally,the maximum values of δ^(18)O and the minimum values of lc-excess of groundwater in most regions were both in August,and the minimum values of δ^(18)O and the maximum values of lc-excess of groundwater in most regions were both in October.Therefore,the groundwater was recharged by soil water with strong evaporation in August and recharged by precipitation at high altitudes in October.The recharge rate of groundwater was relatively fast in areas with large slopes and large hydraulic gradients(e.g.,south of Qinghai Lake),and in areas with strong hydrological connections between the groundwater and river water(e.g.,the Buha River Valley).Those results can provide data support for protection and utilization of water resources in Qinghai Lake Basin,and provide reference for groundwater research in closed lake basins on the Qinghai-Tibet Plateau.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91325102, 91025016 and 91125025)the National Science & Technology Support Project (No. 2011BAC07B05)
文摘Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.
基金the Youth Science and Technology Innovation Fund of Water Resources Research Institute of Anhui Province and Huaihe River Commission,Ministry of Water Resources of China(KY201904).
文摘[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth period of summer maize in Huaibei Plain were analyzed using the 26-year long series of data from the Wudaogou Hydrological Experimental Station,combined with the hydrogen and oxygen stable isotope tracing method.[Results]The average soil moisture content of summer maize in different growth periods showed a trend of first decreasing,then increasing and then decreasing with the increase of soil depth.The average soil moisture content was the lowest at the surface soil layer.From the characteristic values of hydrogen and oxygen isotopes of atmospheric precipitation,soil water and groundwater,it can be known that the average values ofδ18O andδD of soil water decreased with the increase of soil depth,indicating that soil moisture evaporation leads to the enrichment of soil heavy isotopes,and the degree of enrichment decreased from the surface layer to the deep layer of the soil.The seasonal variation of the stable isotope of hydrogen and oxygen in soil water declined with the increase of soil depth.The soil water changes at 30 cm and 50 cm soil depths were the most obvious.The soil was easily recharged by precipitation,and soil evaporation was relatively strong.[Conclusions]The research results are favorable for in-depth understanding of the regional water cycle process,and are expected to provide a certain scientific basis for realizing the efficient and sustainable use of regional groundwater.
文摘In this paper, we briefly go over the homogeneous 5D model field theory: from the 5D space-time inception, to its quantum field solutions given in terms of Higgs vacuum, filled with magnetic monopole bose fields of all energies. Then through the space dimension reduction projections, the Gell-Mann standard model was obtained as well as a quantum to Classical connection was made via introducing Bose distribution to the monopoles to obtain the Perelman entropy and Ricci Flow mappings. This provided us a picture to the creation of Astronomical objects, from galaxies to stars and planets. This method of splitting the monopole energy into ranges is extended to show that below the basic rest mass range of the electron and Quark, it still can be applied to explaining for the creation of the chemical elements periodic table. But perhaps the most interesting is in the lowest hundreds of Hz energy range, obtained from yet another 3 fold space symmetry breaking, into 2D × 1D, producing bio nitrogenous bases composed of 3 Carbon 12 in hexagon structures, due to preservation of the 1D monopole standing waves of this low frequencies. From that by imposing gauge changes the monopole states into DNA spectra. Since such spectra states retain the DLRO, it induces formation of charge carriers periodicity in a spherical bio cell.. It was then argued that due to cell’s surface proteins, the structure must contain partial filled VB, with “p” state hole density, and empty CB, separated from VB by a positive band gap. Such band structures resemble known HTC Cuprate ceramics. Since the HTC goes through a Superconductivity transition via the simultaneous bose exciton condensation, providing a Coulomb pressure, which reduces the band gap substantially, and induces the ODLRO transition of the hole density. The same obviously applies to the bio cells. Because of the near continuous exciton levels generated, a matching to the DNA spectra then can always occur by selective choices of proteins on the cell surface. Judging from a numerical study, we did years ago on YBCO, with doping. We found with a large enough VB hole density, the exciton induced superconducting gap can easily lead to <em>T</em><em>c</em> in the room temperature range. In fact by EMF excitation can increase the exciton pressure and trigger the ODLRO transition <em>T</em><em>c</em> upward. In fact, numerical results then suggest there do exist coherent EMF spectra from three key elements: Water, Carbon and Hydrogen, together with Oxygen, as studied over the years by numerous people, starting from Schr<span style="white-space:nowrap;">ö</span>dinger to most recently Geesink.
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07201004)National Natural Science Foundation of China(No.41101470)
文摘In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.
文摘The Qaidam Basin is a large intermontane depression in Qinghai Province,China,which located on the northern margin of the Tibet plateau,and surrounded by the Qilian,Kunlun and Aljun mountains which rise to more than 5000m.Some 27 salt lakes occur within the basin,occupying an area of approximately 1500 km2.Additionally,there are extensive areas of dry playas.Together,the playas and salt lakes cover about one quarter of the total basin area.Whereas the western
基金This study was supported by the National Natural Science Foundation of China (Grant No.41902065, 41772197)Open Reserch Fund from the State Key Laboratory Breeding base of Nuclear Resources and environment (Grant NRE1803)+1 种基金the Chongqing Science and Technology Innovation Project (Zhu Zhengjie)the Major State Basic Research Development Program (No.2011CB40300)
文摘Sichuan Basin is one of the most important marine–salt forming basins in China. The Simian and Triassic have a large number of evaporites. The Triassic strata have found a large amount of polyhalite and potassium-rich brine. However, no soluble potassium salt deposit were found. In this study, the halite in well Changping 3 which is located at the eastern part of the Sichuan basin was studied using the characteristics, hydrogen and oxygen isotopes of the fluid inclusion in halite to reconstruct the paleoenvironment. The salt rocks in well Changping 3 can be divided into two types: grey salt rock and orange salt rock. The result shows that the isotopic composition of the halite fluid inclusion is distinct from the global precipitation line reflecting that the salt formation process is under strong evaporation conditions and the climate is extremely dry. At the same time, compared with the hydrogen and oxygen isotopes of brine in the Sichuan Basin and the hydrous isotope composition of the inclusions in the salt inclusions of other areas in China, it is shown that the evaporation depth of the ancient seawater in the Sichuan Basin was high and reached the precipitation of potassium and magnesium stage.
基金supported by the National Natural Science Foundation of China (Grant No. 50679024)the Innovation Program for College Graduate of Jiangsu Province of 2007 (Grant No. CX07B_130Z)
文摘The variation of stable isotope ratios in natural waters provides valuable information that can be used to trace water movement. Evaporation plays a crucial role in determining the variation of stable isotopes. In this paper, several evaporation experiments were conducted in order to study the stable isotopic fractionation mechanism of water and analyze the influence of different temperatures on evaporation fractionation. Three group experiments of water evaporation under different temperatures and initial isotopic values were carried out. The results show that fractionation factors of hydrogen and oxygen may increase with temperature, and the average enrichment degree of hydrogen isotope D is 3.432 times that of oxygen isotope 18O. The results also show that the isotopic composition of the initial water has little influence on water evaporation fractionation, which is mainly affected by the state variables in the evaporation process, such as temperature. This research provides experimental data for further understanding the evaporation fractionation mechanism.
基金supported by the West Action Program of the Chinese Academy of Sciences (KZCX2-XB2-04-03)the West Light Foundation of West Doctor of the Chinese Academy of Sciences+1 种基金the China Postdoctoral Science Foundation (Grant No. 200801244 and 20070420135)the Talented Foundation for Young Scientists of Cold and Arid Regions Environmental and Engineering Research Institute (No. 510984911)
文摘The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.
基金supported by the Old Mine Prospecting Technology Innovation and Demonstration Projects of China Geological Survey(No.1212011220737)
文摘The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ^(18)O_(H2O) values calculated from the δ^(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.
基金The National Major Science and Technology Program for Water Pollution Control and Treatment,No.2017ZX07101001-02。
文摘Despite the increasing depletion of the groundwater at the Zhangjiakou aquifer system in the northwest of Beijing-Tianjin-Hebei region,little information is available on the hydrological process of groundwater in this region.In this study,we utilized water isotopes composition(51sO,5D and 3H)of groundwater,river and precipitation to identify the characteristics of hydrochemistry,groundwater age and recharge rates in different watersheds of the Zhangjiakou area.Results showed that the river water and groundwater could be characterized as HCO3-Mg Na,HCO3 CI-Na and HCO3-Mg Na,HCO3 CI-Na,HCO3 CI-Na Mg types,respectively.The 5D and 5180 values in precipitation were linearly correlated,which is similar to the Global Meteorological Water Line(GMWL).Furthermore,the decreasing values of the 6D and 5180 from precipitation to surface water and groundwater indicate that groundwater is mainly recharged by atmospheric precipitation.In addition,the variation of 3H concentration with depth suggests that groundwater shallower than around 100 m is generally modern water.In contrast,groundwater deeper around 100 m is a mixture of modern and old waters,which has longer residence times.Groundwater showed a relatively low tritium concentration in the confined aquifers,indicating the groundwater recharged might be relatively old groundwater of over 60 years.The flow velocity of the groundwater in the study area varied from 1.10 to 2.26 m/a,and the recharge rates ranged from 0.034 to 0.203 m/a.The obtained findings provide important insights into understanding the groundwater recharge sources and hydrochemistry in the Zhangjiakou area,in turn developing a sustainable groundwater management plan.
基金supported by the National Key Technology R&D Program of China(Grant No.2011BAC09B01)Fundamental Research Funds for the Central Universities(Grant Nos.XDJK2014A016&XDJK2016D046)Scientific and Technical Innovative Program of graduate students in Chongqing(Grant No.CYS16050)
文摘The hyporbeic zone plays an important role in groundwater and stream water quality protection. To investigate the stream-groundwater interaction mechanisms in the lateral hyporheic zone, this study examined Ma'an Creek in Chongqing during the dry season from December 2015 to April 2016. The water level, water temperature, pH and CF concentration in the hyporheic zone and groundwater were monitored in situ. The sediment permeability coefficient, stable isotopes of hydrogen and oxygen and concentration of DOC were analyzed. The results show that the water level changes of hyporheic zone and the movement of hyporheic flow were influenced significantly by the permeability coefficient of sediment. The hyporheic flow approximately 10 cm from the stream bank was clearly affected by precipitation infiltration and evapotranspiration. During the study period, the groundwater recharged the stream, and the impact of groundwater on the hyporheic flow gradually decreased with the flow path. The hyporheic flow approximately 30 cm from the stream bank was still mainly affected by groundwater. Approximately 10-30 cm from the stream bank, the mixing of groundwater with precipitation and stream water intensified. Due to the sediment properties, moisture accumulated approximately 10 cm from the stream bank and drained into the stream via hyporheic flow, with potential impacts on stream water quality.